Lesson 9: Multiplying Polynomials

Classwork

Exercise 1

a. Gisella computed 342×23 as follows:

Can you explain what she is doing? What is her final answer?

Use a geometric diagram to compute the following products:
b. $3 x^{2}+4 x+2 \times 2 x+3$
c. $\left(2 x^{2}+10 x+1\right)\left(x^{2}+x+1\right)$
d. $(x-1)\left(x^{3}+6 x^{2}-5\right)$

Exercise 2

Multiply the polynomials using the distributive property: $3 x^{2}+x-1 \quad x^{4}-2 x+1$.

Exercise 3

The expression $10 x^{2}+6 x^{3}$ is the result of applying the distributive property to the expression $2 x^{2}(5+3 x)$. It is also the result of the applying the distributive property to $2\left(5 x^{2}+3 x^{3}\right)$ or to $x\left(10 x+6 x^{2}\right)$, for example, or even to $1 \cdot\left(10 x^{2}+6 x^{3}\right)!$

For (i) to (x) below, write down an expression such that if you applied the distributive property to your expression it will give the result presented. Give interesting answers!
i. $6 a+14 a^{2}$
ii. $\quad 2 x^{4}+2 x^{5}+2 x^{10}$
iii. $\quad 6 z^{2}-15 z$
iv. $42 w^{3}-14 w+77 w^{5}$
v. $z^{2} a+b+z^{3}(a+b)$
vi. $\frac{3}{2} s^{2}+\frac{1}{2}$
vii. $\quad 15 p^{3} r^{4}-6 p^{2} r^{5}+9 p^{4} r^{2}+3 \overline{2} p^{3} r^{6}$
viii. $0.4 x^{9}-40 x^{8}$
ix. $\quad 4 x+3 x^{2}+x^{3}-(2 x+2)\left(x^{2}+x^{3}\right)$
x. $2 z+5 \quad z-2-(13 z-26)(z-3)$

Exercise 4

Sammy wrote a polynomial using only one variable, x, of degree 3. Myisha wrote a polynomial in the same variable of degree 5. What can you say about the degree of the product of Sammy's and Myisha's polynomials?

Extension

Find a polynomial that, when multiplied by $2 x^{2}+3 x+1$, gives the answer $2 x^{3}+x^{2}-2 x-1$.

Problem Set

1. Use the distributive property to write each of the following expressions as the sum of monomials.
a. $3 a(4+a)$
I. $3 x z 9 x y+z-2 y z(x+y-z)$
b. $\quad x x+2+1$
c. $\frac{1}{3}\left(12 z+18 z^{2}\right)$
d. $4 x\left(x^{3}-10\right)$
e. $(x-4)(x+5)$
f. $(2 z-1)\left(3 z^{2}+1\right)$
g. $(10 w-1)(10 w+1)$
h. $-5 w-3 w^{2}$
i. $\quad 16 s^{100} \frac{1}{2} s^{200}+0.125 s$
j. $\quad(2 q+1)\left(2 q^{2}+1\right)$
k. $\left(x^{2}-x+1\right)(x-1)$
m. $(t-1)(t+1)\left(t^{2}+1\right)$
n. $(w+1)\left(w^{4}-w^{3}+w^{2}-w+1\right)$
o. $z(2 z+1)(3 z-2)$
p. $(x+y)(y+z)(z+x)$
q. $\frac{x+y}{3}$
r. $\left(20 f^{10}-10 f^{5}\right) \div 5$
s. $-5 y y^{2}+y-2-2\left(2-y^{3}\right)$
t. $\frac{a+b-c a+b+c}{17}$
u. $(2 x \div 9+(5 x) \div 2) \div(-2)$
v. $\left(-2 f^{3}-2 f+1\right)\left(f^{2}-f+2\right)$
2. Use the distributive property (and your wits!) to write each of the following expressions as a sum of monomials. If the resulting polynomial is in one variable, write the polynomial in standard form.
a. $\quad a+b^{2}$
b. $\quad a+1^{2}$
c. $3+b^{2}$
d. $3+1^{2}$
e. $x+y+z^{2}$
f. $x+1+z^{2}$
g. $3+z^{2}$
h. $p+q^{3}$
i. $\quad p-1^{3}$
j. $\quad 5+q^{3}$
3. Use the distributive property (and your wits!) to write each of the following expressions as a polynomial in standard form.
a. $\left(s^{2}+4\right)(s-1)$
b. $3\left(s^{2}+4\right)(s-1)$
c. $\quad s\left(s^{2}+4\right)(s-1)$
d. $(s+1)\left(s^{2}+4\right)(s-1)$
e. $(u-1)\left(u^{5}+u^{4}+u^{3}+u^{2}+u+1\right)$
f. $\quad \overline{5}(u-1)\left(u^{5}+u^{4}+u^{3}+u^{2}+u+1\right)$
g. $\left(u^{7}+u^{3}+1\right)(u-1)\left(u^{5}+u^{4}+u^{3}+u^{2}+u+1\right)$
4. Beatrice writes down every expression that appears in this problem set, one after the other, linking them with " + " signs between them. She is left with one very large expression on her page. Is that expression a polynomial expression? That is, is it algebraically equivalent to a polynomial?

What if she wrote " - " signs between the expressions instead?
What if she wrote " x " signs between the expressions instead?

