
Lesson 9: Multiplying Polynomials

Classwork

Exercise 1

a. Gisella computed 342×23 as follows:

Can you explain what she is doing? What is her final answer?

Use a geometric diagram to compute the following products:

b.
$$3x^2 + 4x + 2 \times 2x + 3$$

c.
$$(2x^2 + 10x + 1)(x^2 + x + 1)$$

ALGEBRA I

d.
$$(x-1)(x^3+6x^2-5)$$

Exercise 2

Multiply the polynomials using the distributive property: $3x^2 + x - 1$ $x^4 - 2x + 1$.

Exercise 3

The expression $10x^2 + 6x^3$ is the result of applying the distributive property to the expression $2x^2(5+3x)$. It is also the result of the applying the distributive property to $2(5x^2+3x^3)$ or to $x(10x+6x^2)$, for example, or even to $1 \cdot (10x^2+6x^3)$!

For (i) to (x) below, write down an expression such that if you applied the distributive property to your expression it will give the result presented. Give interesting answers!

i.
$$6a + 14a^2$$

ii.
$$2x^4 + 2x^5 + 2x^{10}$$

iii.
$$6z^2 - 15z$$

Multiplying Polynomials 10/22/14

ALGEBRA I

iv.
$$42w^3 - 14w + 77w^5$$

v.
$$z^2 a + b + z^3 (a + b)$$

vi.
$$\frac{3}{2}s^2 + \frac{1}{2}$$

vii.
$$15p^3r^4 - 6p^2r^5 + 9p^4r^2 + 3 \overline{2}p^3r^6$$

viii.
$$0.4x^9 - 40x^8$$

ix.
$$4x + 3$$
 $x^2 + x^3 - (2x + 2)(x^2 + x^3)$

x.
$$2z + 5$$
 $z - 2$ $-(13z - 26)(z - 3)$

(cc) BY-NC-SA

Lesson 9

M1

ALGEBRA I

Exercise 4

Sammy wrote a polynomial using only one variable, x, of degree 3. Myisha wrote a polynomial in the same variable of degree 5. What can you say about the degree of the product of Sammy's and Myisha's polynomials?

Extension

Find a polynomial that, when multiplied by $2x^2 + 3x + 1$, gives the answer $2x^3 + x^2 - 2x - 1$.

(cc) BY-NC-SA

Problem Set

1. Use the distributive property to write each of the following expressions as the sum of monomials.

a.
$$3a(4+a)$$

b.
$$x x + 2 + 1$$

c.
$$\frac{1}{3}(12z + 18z^2)$$

d.
$$4x(x^3 - 10)$$

e.
$$(x-4)(x+5)$$

f.
$$(2z-1)(3z^2+1)$$

g.
$$(10w - 1)(10w + 1)$$

h.
$$-5w - 3 w^2$$

i.
$$16s^{100} \frac{1}{2}s^{200} + 0.125s$$

j.
$$(2q+1)(2q^2+1)$$

k.
$$(x^2 - x + 1)(x - 1)$$

1.
$$3xz \ 9xy + z \ - 2yz(x + y - z)$$

m.
$$(t-1)(t+1)(t^2+1)$$

n.
$$(w+1)(w^4-w^3+w^2-w+1)$$

o.
$$z(2z+1)(3z-2)$$

$$p. \quad (x+y)(y+z)(z+x)$$

q.
$$\frac{x+y}{3}$$

r.
$$(20f^{10} - 10f^5) \div 5$$

s.
$$-5y y^2 + y - 2 - 2(2 - y^3)$$

t.
$$\frac{a+b-c \quad a+b+c}{17}$$

u.
$$(2x \div 9 + (5x) \div 2) \div (-2)$$

v.
$$(-2f^3 - 2f + 1)(f^2 - f + 2)$$

2. Use the distributive property (and your wits!) to write each of the following expressions as a sum of monomials. If the resulting polynomial is in one variable, write the polynomial in standard form.

a.
$$a+b^2$$

b.
$$a + 1^{-2}$$

c.
$$3 + b^{-2}$$

d.
$$3 + 1^{2}$$

e.
$$x + v + z^{-2}$$

f.
$$x + 1 + z^2$$

g.
$$3 + z^2$$

h.
$$p + q^{-3}$$

i.
$$p-1^{-3}$$

i.
$$5 + a^{-3}$$

3. Use the distributive property (and your wits!) to write each of the following expressions as a polynomial in standard form.

a.
$$(s^2 + 4)(s - 1)$$

b.
$$3(s^2+4)(s-1)$$

c.
$$s(s^2 + 4)(s - 1)$$

d.
$$(s+1)(s^2+4)(s-1)$$

e.
$$(u-1)(u^5+u^4+u^3+u^2+u+1)$$

f.
$$\overline{5}(u-1)(u^5+u^4+u^3+u^2+u+1)$$

g.
$$(u^7 + u^3 + 1)(u - 1)(u^5 + u^4 + u^3 + u^2 + u + 1)$$

4. Beatrice writes down every expression that appears in this problem set, one after the other, linking them with "+" signs between them. She is left with one very large expression on her page. Is that expression a polynomial expression? That is, is it algebraically equivalent to a polynomial?

What if she wrote " - " signs between the expressions instead?

What if she wrote "x" signs between the expressions instead?