Lesson 5: Measuring Variability for Symmetrical Distributions

Classwork

Example 1: Calculating the Standard Deviation

Here is a dot plot of the lives of the Brand A batteries from Lesson 4.

How do you measure variability of this data set? One way is by calculating standard deviation.

- First, find each deviation from the mean.
- Then, square the deviations from the mean. For example, when the deviation from the mean is -18 the squared deviation from the mean is $(-18)^{2}=324$.

Life (Hours)	83	94	96	106	113	114
Deviation from the Mean	-18	-7	-5	5	12	13
Squared Deviations from the Mean	324	49	25	25	144	169

- Add up the squared deviations:

$$
324+49+25+25+144+169=736
$$

This result is the sum of the squared deviations.

The number of values in the data set is denoted by n. In this example, n is 6 .

- You divide the sum of the squared deviations by $n-1$, which here is $6-1=5$.

$$
\frac{736}{5}=147.2
$$

- Finally, you take the square root of 147.2 , which to the nearest hundredth is 12.13 .

That is the standard deviation! It seems like a very complicated process at first, but you will soon get used to it. We conclude that a typical deviation of a Brand A battery lifetime from the mean battery lifetime for Brand A is 12.13 hours. The unit of standard deviation is always the same as the unit of the original data set. So, the standard deviation to the nearest hundredth, with the unit, is 12.13 hours. How close is the answer to the typical deviation that you estimated at the beginning of the lesson?

Exercises 1-5

Now you can calculate the standard deviation of the lifetimes for the eight Brand B batteries. The mean was 100.5. We already have the deviations from the mean.

Life (Hours)	73	76	92	94	110	117	118	124
Deviation from the Mean	-27.5	-24.5	-8.5	-6.5	9.5	16.5	17.5	23.5
Squared Deviation from the Mean								

1. Write the squared deviations in the table.
2. Add up the squared deviations. What result do you get?
3. What is the value of n for this data set? Divide the sum of the squared deviations by $n-1$, and write your answer below. Round your answer to the nearest thousandth.
4. Take the square root to find the standard deviation. Record your answer to the nearest hundredth.
5. How would you interpret the standard deviation that you found in Exercise 4? (Remember to give your answer in the context of this question. Interpret your answer to the nearest hundredth.)

Exercises 6-7

Jenna has bought a new hybrid car. Each week for a period of seven weeks, she has noted the fuel efficiency (in miles per gallon) of her car. The results are shown below.

$$
\begin{array}{lllllll}
45 & 44 & 43 & 44 & 45 & 44 & 43
\end{array}
$$

6. Calculate the standard deviation of these results to the nearest hundredth. Be sure to show your work.
7. What is the meaning of the standard deviation you found in Exercise 6?

Lesson Summary

- The standard deviation measures a typical deviation from the mean.
- To calculate the standard deviation,

1. Find the mean of the data set;
2. Calculate the deviations from the mean;
3. Square the deviations from the mean;
4. Add up the squared deviations;
5. Divide by $n-1$ (if you are working with a data from a sample, which is the most common case);
6. Take the square root.

- The unit of the standard deviation is always the same as the unit of the original data set.
- The larger the standard deviation, the greater the spread (variability) of the data set.

Problem Set

1. A small car dealership tests the fuel efficiency of sedans on its lot. It chooses 12 sedans for the test. The fuel efficiency (mpg) values of the cars are given in the table below. Complete the table as directed below.

Fuel Efficiency (miles per gallon)	29	35	24	25	21	21	18	28	31	26	26	22
Deviation from the Mean												
Squared Deviation from the Mean												

a. Calculate the mean fuel efficiency for these cars. Calculate the mean fuel efficiency for these cars.
b. Calculate the deviations from the mean, and write your answers in the second row of the table.
c. Square the deviations from the mean, and write the squared deviations in the third row of the table.
d. Find the sum of the squared deviations.
e. What is the value of n for this data set? Divide the sum of the squared deviations by $n-1$.
f. Take the square root of your answer to (e) to find the standard deviation of the fuel efficiencies of these cars. Round your answer to the nearest hundredth.
2. The same dealership decides to test fuel efficiency of SUVs. It selects six SUVs on its lot for the test. The fuel efficiencies (in miles per gallon) of these cars are shown below.

$$
\begin{array}{llllll}
21 & 21 & 21 & 30 & 28 & 24
\end{array}
$$

Calculate the mean and the standard deviation of these values. Be sure to show your work, and include a unit in your answer.
3. Consider the following questions regarding the cars described in Problems 1 and 2.
a. What is the standard deviation of the fuel efficiencies of the cars in Problem 1? Explain what this value tells you.
b. You also calculated the standard deviation of the fuel efficiencies for the cars in Problem 2. Which of the two data sets (Problem 1 or Problem 2) has the larger standard deviation? What does this tell you about the two types of cars (sedans and SUVs)?

CORE

