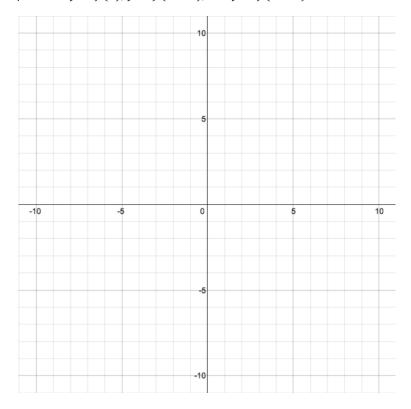
Lesson 18

Lesson 18: Four Interesting Transformations of Functions

Classwork

Example

Let f(x) = |x|, g(x) = f(x - 3), h(x) = f(x + 2) where x can be any real number.


- a. Write the formula for g(x) in terms of |x| (i.e., without using f(x) notation).
- Write the formula for h(x) in terms of |x| (i.e., without using f(x) notation).
- Complete the table of values for these functions.

х	f(x) = x	g(x) =	h(x) =
-3			
-2			
-1			
0			
1			
2			
3			

Lesson 18

Graph all three equations: y = f(x), y = f(x - 3), and y = f(x + 2).

- How does the graph of y = f(x) relate to the graph of y = f(x 3)?
- How does the graph of y = f(x) relate to the graph of y = f(x + 2)? f.
- How does the graph of y = |x| 3 and the graph of y = |x 3| relate differently to the graph of y = |x|?

Lesson 18

h. How do the values of g and h relate to the values of f?

Exercises

1. Karla and Isamar are disagreeing over which way the graph of the function g(x) = |x + 3| is translated relative to the graph of f(x) = |x|. Karla believes the graph of g is "to the right" of the graph of f; Isamar believes the graph is "to the left." Who is correct? Use the coordinates of the vertex of f and g and to support your explanation.

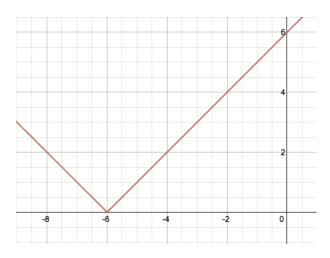
2. Let f(x) = |x| where x can be any real number. Write a formula for the function whose graph is the transformation of the graph of f given by the instructions below.

a. A translation right 5 units.

b. A translation down 3 units.

c. A vertical scaling (a vertical stretch) with scale factor of 5.

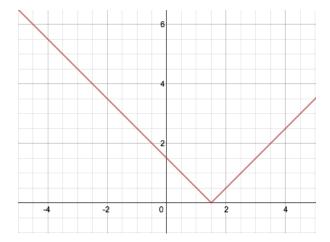
d. A translation left 4 units.

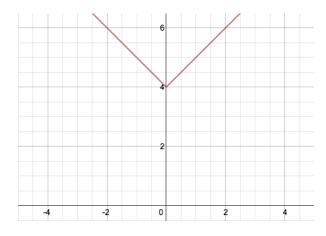


Lesson 18: Date: Four Interesting Transformations of Functions 10/30/14

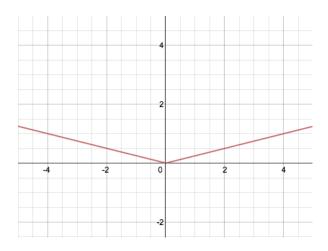
- e. A vertical scaling (a vertical shrink) with scale factor of $\frac{1}{3}$.
- 3. Write the formula for the function depicted by the graph.

a.
$$y =$$

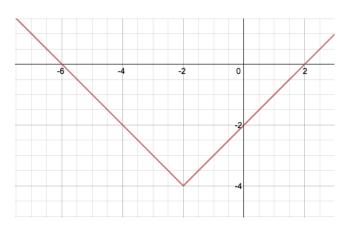

b.
$$y =$$


CC BY-NC-SA

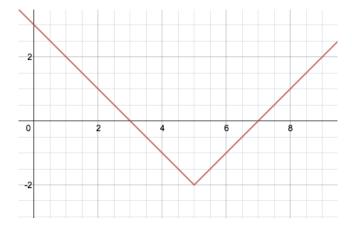
Lesson 18


c.
$$y =$$

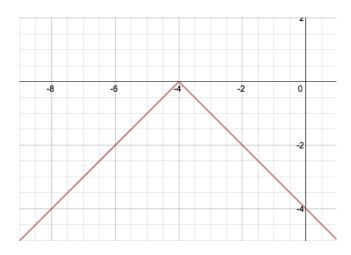
d. y =



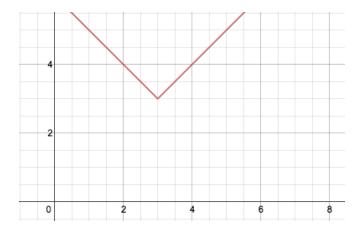
e. y =


- 4. Let f(x) = |x| where x can be any real number. Write a formula for the function whose graph is the described transformation of the graph of f.
 - a. A translation 2 units left and 4 units down.
 - b. A translation 2.5 units right and 1 unit up.
 - c. A vertical scaling with scale factor $\frac{1}{2}$ and then a translation 3 units right.
 - d. A translation 5 units right and a vertical scaling by reflecting across the x-axis with vertical scale factor -2.

- 5. Write the formula for the function depicted by the graph.
 - a. y =

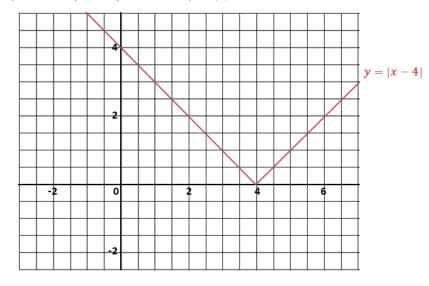


(cc) BY-NC-SA


b.
$$y =$$

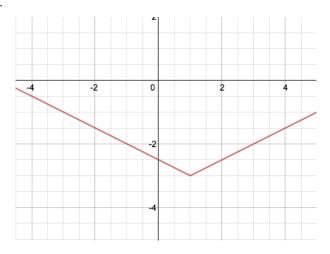
c. y =

d. y =

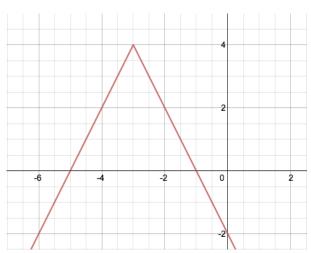


Problem Set

- 1. Working With Quadratic Functions:
 - a. The vertex of the quadratic function $f(x) = x^2$ is at (0,0), which is the minimum for the graph of f. Based on your work in this lesson, to where do you predict the vertex will be translated for the graphs of $g(x) = (x-2)^2$ and $h(x) = (x+3)^2$?
 - b. Complete the table of values and then graph all three functions.


х	$f(x)=x^2$	$g(x) = (x-2)^2$	$h(x) = (x+3)^2$
-3			
-2			
-1			
0			
1			
2			
3			

- 2. Let f(x) = |x 4| for every real number x. The graph of the equation y = f(x) is provided on the Cartesian plane below. Transformations of the graph of y = f(x) are described below. After each description, write the equation for the transformed graph. Then, sketch the graph of the equation you write for part (d).
 - a. Translate the graph left 6 units and down 2 units.
 - b. Reflect the resulting graph from part (a) across the *x*-axis.
 - c. Scale the resulting graph from part (b) vertically by a scale factor of $\frac{1}{2}$.
 - d. Translate the resulting graph from part (c) right 3 units and up 2 units. Graph the resulting equation.



(cc) BY-NC-SA

- 3. Let f(x) = |x| for all real numbers x. Write the formula for the function represented by the described transformation of the graph of y = f(x).
 - a. First, a vertical stretch with scale factor $\frac{1}{3}$ is performed, then a translation right 3 units, and finally a translation down 1 unit.
 - b. First, a vertical stretch with scale factor 3 is performed, then a reflection over the x-axis, then a translation left 4 units, and finally a translation up 5 units.
 - c. First, a reflection across the x-axis is performed, then a translation left 4 units, then a translation up 5 units, and finally a vertical stretch with scale factor 3.
 - d. Compare your answers to parts (b) and (c). Why are they different?
- 4. Write the formula for the function depicted by each graph.
 - a. a(x) =

b. b(x) =

(cc) BY-NC-SA