Lesson 20: Stretching and Shrinking Graphs of Functions

Classwork

Opening Exercise

The graph of a quadratic function defined by $f(x)=x^{2}$ has been translated 5 units to the left and 3 units up. What is the formula for the function, g, depicted by the translated graph?

Sketch the graph of the equation $y=g(x)$.

Example

Exploratory Challenge

Complete the following to review Module 3 concepts:
a. Consider the function $f(x)=|x|$. Complete the table of values for $f(x)$. Then, graph the equation $y=f(x)$ on the coordinate plane provided for part (b).

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-4	
-2	
0	
2	
4	

b. Complete the following table of values for each transformation of the function f. Then, graph the equations $y=g(x), y=h(x), y=j(x)$, and $y=k(x)$ on the same coordinate plane as the graph of $y=f(x)$. Label each graph.

x	$f(x)$	$g(x)=3 f(x)$	$h(x)=2 f(x)$	$j(x)=0.5 f(x)$	$\boldsymbol{k}(x)=-2 f(x)$
-4					
-2					
0					
2					
4					

c. Describe how the graph of $y=k f(x)$ relates to the graph of $y=f(x)$ for each case.
i. $\quad k>1$
ii. $\quad 0<k<1$
iii. $\quad k=-1$
iv. $-1<k<0$
v. $k<-1$
d. Describe the transformation of the graph of f that results in the graphs of g, h, and k given the following formulas for each function. Then, graph each function and label each graph.
$f(x)=x^{3}$
$g(x)=2 x^{3}$
$h(x)=0.5 x^{3}$
$k(x)=-3 x^{3}$

e. Consider the function $f(x)=\sqrt[3]{x}$. Complete the table of values, then graph the equation $y=f(x)$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-8	
-1	
0	
1	
8	

f. Complete the following table of values, rounding each value to the nearest hundredth. Graph the equations $y=g(x), y=h(x)$, and $y=j(x)$ on the same coordinate plane as your graph of $y=f(x)$ above. Label each graph.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(2 \boldsymbol{x})$	$\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}(\mathbf{0 . 5 x})$	$\boldsymbol{j}(\boldsymbol{x})=\boldsymbol{f}(-2 \boldsymbol{x})$
-8				
-1				
0				
1				
8				

g. Describe the transformations of the graph of f that result in the graphs of g, h, and j.
h. Describe how the graph of $y=f\left(\frac{1}{k} x\right)$ relates to the graph of $y=f(x)$ for each case.
i. $\quad k>1$
ii. $\quad 0<k<1$
iii. $\quad k=-1$
iv. $\quad-1<k<0$
v. $k<-1$

Exercise 1

For each of the sets below, answer the following questions:

- What are the parent functions?
- How does the translated graph relate to the graph of the parent function?
- Write the formula for the function depicted by the translated graph.
a.

b.

Exercise 2

Graph each set of functions in the same coordinate plane. Do not use a graphing calculator.
a. $\quad f(x)=|x|$
$g(x)=4|x|$
$h(x)=|2 x|$
$k(x)=-2|2 x|$
b. $g(x)=\sqrt[3]{x}$
$p(x)=2 \sqrt[3]{x}$
$q(x)=-2 \sqrt[3]{2 x}$

Problem Set

1. Graph the functions in the same coordinate plane. Do not use a graphing calculator.
$f(x)=|x|$
$g(x)=2|x|$
$h(x)=|3 x|$
$k(x)=-3|3 x|$
2. Explain how the graphs of functions $g(x)=3|x|$ and $h(x)=|3 x|$ are related.
3. Explain how the graphs of functions $q(x)=-3|x|$ and $r(x)=|-3 x|$ are related.
4. Write a function, g in terms of another function f, such that the graph of g is a vertical shrink of the graph f by a factor of 0.75 .
5. A teacher wants the students to write a function based on the parent function $f(x)=\sqrt[3]{x}$. The graph of f is stretched vertically by a factor of 4 and shrunk horizontally by a factor of $\frac{1}{3}$. Mike wrote $g(x)=4 \sqrt[3]{3 x}$ as the new function, while Lucy wrote $h(x)=3 \sqrt[3]{4 x}$. Which one is correct? Justify your answer.
6. Study the graphs of two different functions below. Which is a parent function? What is the constant value(s) multiplied to the parent function to arrive at the transformed graph? Now write the function defined by the transformed graph.

