Lesson 7: Mental Math

Classwork

Opening Exercise

a. How are these two equations related?
$\frac{x^{2}-1}{x+1}=x-1$ and $x^{2}-1=(x+1)(x-1)$
b. Explain the relationship between the polynomial identities $x^{2}-1=(x+1)(x-1)$ and $x^{2}-a^{2}=(x-a)(x+a)$.

Exercises 1-3

1. Compute the following products using the identity $x^{2}-a^{2}=(x-a)(x+a)$. Show your steps.
a. $6 \cdot 8$
b. $11 \cdot 19$
c. $23 \cdot 17$
d. $34 \cdot 26$
2. Find two additional factors of $2^{100}-1$.
3. Show that $8^{3}-1$ is divisible by 7 .

Lesson Summary

Based on the work in this lesson, we can convert differences of squares into products (and vice versa) using

$$
x^{2}-a^{2}=(x-a)(x+a)
$$

If x, a, and n are integers and $n>1$, then numbers of the form $x^{n}-a^{n}$ are not prime because

$$
x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\cdots+a^{n-2} x+a^{n-1}\right)
$$

Problem Set

1. Using an appropriate polynomial identity, quickly compute the following products. Show each step. Be sure to state your values for x and a.
a. $41 \cdot 19$
b. $993 \cdot 1,007$
c. $213 \cdot 187$
d. $29 \cdot 51$
e. $125 \cdot 75$
2. Give the general steps you take to determine x and a when asked to compute a product such as those in Problem 1.
3. Why is $17 \cdot 23$ easier to compute than $17 \cdot 22$?
4. Rewrite the following differences of squares as a product of two integers.
a. 81-1
b. $400-121$
5. Quickly compute the following differences of squares.
a. $64^{2}-14^{2}$
b. $\quad 112^{2}-88^{2}$
c. $785^{2}-215^{2}$
6. Is 323 prime? Use the fact that $18^{2}=324$ and an identity to support your answer.
7. The number $2^{3}-1$ is prime and so are $2^{5}-1$ and $2^{7}-1$. Does that mean $2^{9}-1$ is prime? Explain why or why not.
8. Show that $9,999,999,991$ is not prime without using a calculator or computer.
9. Show that 999,973 is not prime without using a calculator or computer.
10. Find a value of b so that the expression $b^{n}-1$ is always divisible by 5 for any positive integer n. Explain why your value of b works for any positive integer n.
11. Find a value of b so that the expression $b^{n}-1$ is always divisible by 7 for any positive integer n. Explain why your value of b works for any positive integer n.
12. Find a value of b so that the expression $b^{n}-1$ is divisible by both 7 and 9 for any positive integer n. Explain why your value of b works for any positive integer n.
