

Lesson 7: Mental Math

Classwork

Opening Exercise

a. How are these two equations related?

$$\frac{x^2 - 1}{x + 1} = x - 1 \text{ and } x^2 - 1 = (x + 1)(x - 1)$$

b. Explain the relationship between the polynomial identities $x^2 - 1 = (x + 1)(x - 1)$ and $x^2 - a^2 = (x - a)(x + a)$.

Exercises 1–3

- 1. Compute the following products using the identity $x^2 a^2 = (x a)(x + a)$. Show your steps.
 - a. 6 · 8

b. $11 \cdot 19$

engage^{ny}

Lesson 7:

c. 23 · 17

d. $34 \cdot 26$

2. Find two additional factors of $2^{100} - 1$.

3. Show that $8^3 - 1$ is divisible by 7.

engage^{ny}

Lesson Summary

Based on the work in this lesson, we can convert differences of squares into products (and vice versa) using

$$x^2 - a^2 = (x - a)(x + a).$$

If x, a, and n are integers and n > 1, then numbers of the form $x^n - a^n$ are not prime because

 $x^{n} - a^{n} = (x - a)(x^{n-1} + ax^{n-2} + a^{2}x^{n-3} + \dots + a^{n-2}x + a^{n-1}).$

Problem Set

- 1. Using an appropriate polynomial identity, quickly compute the following products. Show each step. Be sure to state your values for *x* and *a*.
 - a. 41 · 19
 - b. 993 · 1,007
 - c. 213 · 187
 - d. 29 · 51
 - e. 125 · 75
- 2. Give the general steps you take to determine *x* and *a* when asked to compute a product such as those in Problem 1.
- 3. Why is $17 \cdot 23$ easier to compute than $17 \cdot 22$?
- 4. Rewrite the following differences of squares as a product of two integers.
 - a. 81 1
 - b. 400 121
- 5. Quickly compute the following differences of squares.
 - a. $64^2 14^2$
 - b. $112^2 88^2$
 - c. $785^2 215^2$
- 6. Is 323 prime? Use the fact that $18^2 = 324$ and an identity to support your answer.
- 7. The number $2^3 1$ is prime and so are $2^5 1$ and $2^7 1$. Does that mean $2^9 1$ is prime? Explain why or why not.
- 8. Show that 9,999,999,991 is not prime without using a calculator or computer.

engage^{ny}

Lesson 7:

- Show that 999,973 is not prime without using a calculator or computer. 9.
- 10. Find a value of b so that the expression $b^n 1$ is always divisible by 5 for any positive integer n. Explain why your value of b works for any positive integer n.
- 11. Find a value of b so that the expression $b^n 1$ is always divisible by 7 for any positive integer n. Explain why your value of *b* works for any positive integer *n*.
- 12. Find a value of b so that the expression $b^n 1$ is divisible by both 7 and 9 for any positive integer n. Explain why your value of b works for any positive integer n.

engage^{ny}