

Lesson 9: Radicals and Conjugates

Classwork

Opening Exercise

Which of these statements are true for all a, b > 0? Explain your conjecture.

i.
$$2(a + b) = 2a + 2b$$

ii.
$$\frac{a+b}{2} = \frac{a}{2} + \frac{b}{2}$$

iii.
$$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

Example 1

Express $\sqrt{50} - \sqrt{18} + \sqrt{8}$ in simplest radical form and combine like terms.

Exercises 1–5

1. $\sqrt{\frac{1}{4}} + \sqrt{\frac{9}{4}} - \sqrt{45}$

2. $\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)$

engage^{ny}

Date:

3. $\sqrt{\frac{3}{8}}$

4. $\sqrt[3]{\frac{5}{32}}$

5. $\sqrt[3]{16x^5}$

Example 2

Multiply and combine like terms. Then explain what you notice about the two different results.

 $(\sqrt{3} + \sqrt{2}) (\sqrt{3} + \sqrt{2})$ $(\sqrt{3} + \sqrt{2}) (\sqrt{3} - \sqrt{2})$

engage^{ny}

Exercise 6

6. Find the product of the conjugate radicals. $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$

 $(7+\sqrt{2})(7-\sqrt{2})$

 $(\sqrt{5}+2)(\sqrt{5}-2)$

Example 3

Write $\frac{\sqrt{3}}{5-2\sqrt{3}}$ in simplest radical form.

engage^{ny}

Lesson Summary

For real numbers $a \ge 0$ and $b \ge 0$, where $b \ne 0$ when b is a denominator,

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 and $\sqrt{\frac{a}{b}} = rac{\sqrt{a}}{\sqrt{b}}$

For real numbers $a \ge 0$ and $b \ge 0$, where $b \ne 0$ when b is a denominator,

$$\sqrt[3]{ab} = \sqrt[3]{a} \cdot \sqrt[3]{b}$$
 and $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$.

• Two binomials of the form $\sqrt{a} + \sqrt{b}$ and $\sqrt{a} - \sqrt{b}$ are called conjugate radicals:

 $\sqrt{a} + \sqrt{b}$ is the conjugate of $\sqrt{a} - \sqrt{b}$, and

 $\sqrt{a} - \sqrt{b}$ is the conjugate of $\sqrt{a} + \sqrt{b}$.

For example, the conjugate of $2 - \sqrt{3}$ is $2 + \sqrt{3}$.

• To express a numeric expression with a denominator of the form $\sqrt{a} + \sqrt{b}$ in simplest radical form, multiply the numerator and denominator by the conjugate $\sqrt{a} - \sqrt{b}$ and combine like terms.

Problem Set

- 1. Express each of the following as a rational number or in simplest radical form. Assume that the symbols *a*, *b*, and *x* represent positive numbers.
 - a. $\sqrt{36}$
 - b. $\sqrt{72}$
 - c. $\sqrt{18}$
 - d. $\sqrt{9x^3}$
 - e. $\sqrt{27x^2}$
 - f. $\sqrt[3]{16}$
 - g. $\sqrt[3]{24a}$
 - h. $\sqrt{9a^2 + 9b^2}$
- 2. Express each of the following in simplest radical form, combining terms where possible.

a.
$$\sqrt{25} + \sqrt{45} - \sqrt{20}$$

b. $3\sqrt{3} - \sqrt{\frac{3}{4}} + \sqrt{\frac{1}{3}}$
c. $\sqrt[3]{54} - \sqrt[3]{8} + 7\sqrt[3]{\frac{1}{4}}$

d. $\sqrt[3]{\frac{5}{8}} + \sqrt[3]{40} - \sqrt[3]{\frac{8}{9}}$

engage^{ny}

Lesson 9

ALGEBRA II

Lesson 9:

Date:

- Evaluate $\sqrt{x^2 y^2}$ when x = 33 and y = 15. 3.
- Evaluate $\sqrt{x^2 + y^2}$ when x = 20 and y = 10. 4.
- Express each of the following as a rational expression or in simplest radical form. Assume that the symbols x and y5. represent positive numbers.
 - a. $\sqrt{3}(\sqrt{7} \sqrt{3})$
 - b. $(3+\sqrt{2})^2$
 - c. $(2 + \sqrt{3})(2 \sqrt{3})$
 - d. $(2+2\sqrt{5})(2-2\sqrt{5})$
 - e. $(\sqrt{7} 3)(\sqrt{7} + 3)$
 - f. $(3\sqrt{2} + \sqrt{7})(3\sqrt{2} \sqrt{7})$

g.
$$(x-\sqrt{3})(x+\sqrt{3})$$

- h. $(2x\sqrt{2} + y)(2x\sqrt{2} y)$
- Simplify each of the following quotients as far as possible. 6.
 - a. $(\sqrt{21} \sqrt{3}) \div \sqrt{3}$ b. $(\sqrt{5}+4) \div (\sqrt{5}+1)$
 - c. $(3 \sqrt{2}) \div (3\sqrt{2} 5)$
 - d. $(2\sqrt{5} \sqrt{3}) \div (3\sqrt{5} 4\sqrt{2})$
- 7. If $x = 2 + \sqrt{3}$, show that $x + \frac{1}{x}$ has a rational value.
- Evaluate $5x^2 10x$ when the value of x is $\frac{2-\sqrt{5}}{2}$. 8.
- Write the factors of $a^4 b^4$. Use the result to obtain the factored form of $(\sqrt{3} + \sqrt{2})^4 (\sqrt{3} \sqrt{2})^4$. 9.
- 10. The converse of the Pythagorean Theorem is also a theorem: If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

Use the converse of the Pythagorean Theorem to show that for A, B, C > 0, if A + B = C, then $\sqrt{A} + \sqrt{B} > \sqrt{C}$, so that $\sqrt{A} + \sqrt{B} > \sqrt{A + B}$.

engage

Date: