## Lesson 9: Radicals and Conjugates

## Classwork

## Opening Exercise

Which of these statements are true for all $a, b>0$ ? Explain your conjecture.
i. $2(a+b)=2 a+2 b$
ii. $\quad \frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}$
iii. $\quad \sqrt{a+b}=\sqrt{a}+\sqrt{b}$

## Example 1

Express $\sqrt{50}-\sqrt{18}+\sqrt{8}$ in simplest radical form and combine like terms.

## Exercises 1-5

1. $\sqrt{\frac{1}{4}}+\sqrt{\frac{9}{4}}-\sqrt{45}$
2. $\sqrt{2}(\sqrt{3}-\sqrt{2})$
3. $\sqrt{\frac{3}{8}}$
4. $\sqrt[3]{\frac{5}{32}}$
5. $\sqrt[3]{16 x^{5}}$

## Example 2

Multiply and combine like terms. Then explain what you notice about the two different results.
$(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2})$
$(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})$

## Exercise 6

6. Find the product of the conjugate radicals.
$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$
$(7+\sqrt{2})(7-\sqrt{2})$
$(\sqrt{5}+2)(\sqrt{5}-2)$

## Example 3

Write $\frac{\sqrt{3}}{5-2 \sqrt{3}}$ in simplest radical form.

## Lesson Summary

- For real numbers $a \geq 0$ and $b \geq 0$, where $b \neq 0$ when $b$ is a denominator,

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \text { and } \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} .
$$

- For real numbers $a \geq 0$ and $b \geq 0$, where $b \neq 0$ when $b$ is a denominator,

$$
\sqrt[3]{a b}=\sqrt[3]{a} \cdot \sqrt[3]{b} \text { and } \sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}
$$

- Two binomials of the form $\sqrt{a}+\sqrt{b}$ and $\sqrt{a}-\sqrt{b}$ are called conjugate radicals:
$\sqrt{a}+\sqrt{b}$ is the conjugate of $\sqrt{a}-\sqrt{b}$, and
$\sqrt{a}-\sqrt{b}$ is the conjugate of $\sqrt{a}+\sqrt{b}$.
For example, the conjugate of $2-\sqrt{3}$ is $2+\sqrt{3}$.
- To express a numeric expression with a denominator of the form $\sqrt{a}+\sqrt{b}$ in simplest radical form, multiply the numerator and denominator by the conjugate $\sqrt{a}-\sqrt{b}$ and combine like terms.


## Problem Set

1. Express each of the following as a rational number or in simplest radical form. Assume that the symbols $a, b$, and $x$ represent positive numbers.
a. $\sqrt{36}$
b. $\sqrt{72}$
c. $\sqrt{18}$
d. $\sqrt{9 x^{3}}$
e. $\sqrt{27 x^{2}}$
f. $\sqrt[3]{16}$
g. $\sqrt[3]{24 a}$
h. $\sqrt{9 a^{2}+9 b^{2}}$
2. Express each of the following in simplest radical form, combining terms where possible.
a. $\sqrt{25}+\sqrt{45}-\sqrt{20}$
b. $3 \sqrt{3}-\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{3}}$
c. $\sqrt[3]{54}-\sqrt[3]{8}+7 \sqrt[3]{\frac{1}{4}}$
d. $\sqrt[3]{\frac{5}{8}}+\sqrt[3]{40}-\sqrt[3]{\frac{8}{9}}$
3. Evaluate $\sqrt{x^{2}-y^{2}}$ when $x=33$ and $y=15$.
4. Evaluate $\sqrt{x^{2}+y^{2}}$ when $x=20$ and $y=10$.
5. Express each of the following as a rational expression or in simplest radical form. Assume that the symbols $x$ and $y$ represent positive numbers.
a. $\quad \sqrt{3}(\sqrt{7}-\sqrt{3})$
b. $(3+\sqrt{2})^{2}$
c. $(2+\sqrt{3})(2-\sqrt{3})$
d. $(2+2 \sqrt{5})(2-2 \sqrt{5})$
e. $(\sqrt{7}-3)(\sqrt{7}+3)$
f. $(3 \sqrt{2}+\sqrt{7})(3 \sqrt{2}-\sqrt{7})$
g. $(x-\sqrt{3})(x+\sqrt{3})$
h. $(2 x \sqrt{2}+y)(2 x \sqrt{2}-y)$
6. Simplify each of the following quotients as far as possible.
a. $(\sqrt{21}-\sqrt{3}) \div \sqrt{3}$
b. $(\sqrt{5}+4) \div(\sqrt{5}+1)$
c. $(3-\sqrt{2}) \div(3 \sqrt{2}-5)$
d. $(2 \sqrt{5}-\sqrt{3}) \div(3 \sqrt{5}-4 \sqrt{2})$
7. If $x=2+\sqrt{3}$, show that $x+\frac{1}{x}$ has a rational value.
8. Evaluate $5 x^{2}-10 x$ when the value of $x$ is $\frac{2-\sqrt{5}}{2}$.
9. Write the factors of $a^{4}-b^{4}$. Use the result to obtain the factored form of $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$.
10. The converse of the Pythagorean Theorem is also a theorem: If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.
Use the converse of the Pythagorean Theorem to show that for $A, B, C>0$, if $A+B=C$, then $\sqrt{A}+\sqrt{B}>\sqrt{C}$, so that $\sqrt{A}+\sqrt{B}>\sqrt{A+B}$.
