Lesson 13: Mastering Factoring

Classwork

Opening Exercises

Factor each of the following expressions. What similarities do you notice between the examples in the left column and those on the right?
a. $x^{2}-1$
b. $9 x^{2}-1$
c. $x^{2}+8 x+15$
d. $4 x^{2}+16 x+15$
e. $x^{2}-y^{2}$
f. $x^{4}-y^{4}$

Example 1

Write $9-16 x^{4}$ as the product of two factors.

Example 2

Factor $4 x^{2} y^{4}-25 x^{4} z^{6}$.

Exercise 1

1. Factor the following expressions:
a. $4 x^{2}+4 x-63$
b. $12 y^{2}-24 y-15$

Exercises 2-4

Factor each of the following, and show that the factored form is equivalent to the original expression.
2. $a^{3}+27$
3. $x^{3}-64$
4. $2 x^{3}+128$

Lesson Summary

In this lesson we learned additional strategies for factoring polynomials.

- The difference of squares identity $a^{2}-b^{2}=(a-b)(a+b)$ can be used to to factor more advanced binomials.
- Trinomials can often be factored by looking for structure and then applying our previous factoring methods.
- Sums and differences of cubes can be factored by the formulas

$$
\begin{aligned}
& x^{3}+a^{3}=(x+a)\left(x^{2}-a x-a^{2}\right) \\
& x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)
\end{aligned}
$$

Problem Set

1. If possible, factor the following expressions using the techniques discussed in this lesson.
a. $25 x^{2}-25 x-14$
b. $9 x^{2} y^{2}-18 x y+8$
c. $45 y^{2}+15 y-10$
d. $y^{6}-y^{3}-6$
e. $x^{3}-125$
f. $2 x^{4}-16 x$
g. $\quad 9 x^{2}-25 y^{4} z^{6}$
h. $36 x^{6} y^{4} z^{2}-25 x^{2} z^{10}$
i. $\quad 4 x^{2}+9$
j. $\quad x^{4}-36$
k. $1+27 x^{9}$
l. $x^{3} y^{6}+8 z^{3}$
2. Consider the polynomial expression $y^{4}+4 y^{2}+16$.
a. Is $y^{4}+4 y^{2}+16$ factorable using the methods we have seen so far?
b. Factor $y^{6}-64$ first as a difference of cubes, then factor completely: $\left(y^{2}\right)^{3}-4^{3}$.
c. Factor $y^{6}-64$ first as a difference of squares, then factor completely: $\left(y^{3}\right)^{2}-8^{2}$.
d. Explain how your answers to parts (b) and (c) provide a factorization of $y^{4}+4 y^{2}+16$.
e. If a polynomial can be factored as either a difference of squares or a difference of cubes, which formula should you apply first, and why?
3. Create expressions that have a structure that allows them to be factored using the specified identity. Be creative and produce challenging problems!
a. Difference of squares
b. Difference of cubes
c. Sum of cubes
