Lesson 19: The Remainder Theorem

Classwork

Exercises 1-3

1. Consider the polynomial function $f(x)=3 x^{2}+8 x-4$.
a. \quad Divide f by $x-2$.
b. Find $f(2)$.
2. Consider the polynomial function $g(x)=x^{3}-3 x^{2}+6 x+8$.
a. \quad Divide g by $x+1$.
b. Find $g(-1)$.
3. Consider the polynomial function $h(x)=x^{3}+2 x-3$.
a. \quad Divide h by $x-3$.
b. Find $h(3)$.

Exercises 4-6

4. Consider the polynomial $P(x)=x^{3}+k x^{2}+x+6$.
a. Find the value of k so that $x+1$ is a factor of P.
b. Find the other two factors of P for the value of k found in part (a).
5. Consider the polynomial $P(x)=x^{4}+3 x^{3}-28 x^{2}-36 x+144$.
a. Is 1 a zero of the polynomial P ?
b. Is $x+3$ one of the factors of P ?
c. The graph of P is shown to the right. What are the zeros of P ?
d. Write the equation of P in factored form.

6. Consider the graph of a degree 5 polynomial shown to the right, with x-intercepts $-4,-2,1,3$, and 5 .
a. Write a formula for a possible polynomial function that the graph represents using c as constant factor.

b. Suppose the y-intercept is -4 . Adjust your function to fit the y-intercept by finding the constant factor c.

Lesson Summary

Remainder Theorem:

Let P be a polynomial function in x, and let a be any real number. Then there exists a unique polynomial function q such that the equation

$$
P(x)=q(x)(x-a)+P(a)
$$

is true for all x. That is, when a polynomial is divided by $(x-a)$, the remainder is the value of the polynomial evaluated at a.

Factor Theorem:

Let P be a polynomial function in x, and let a be any real number. If a is a zero of P, then $(x-a)$ is a factor of P. Example: If $P(x)=x^{2}-3$ and $a=4$, then $P(x)=(x+4)(x-4)+13$ where $q(x)=x+4$ and $P(4)=13$. Example: If $P(x)=x^{3}-5 x^{2}+3 x+9$, then $P(3)=27-45+9+9=0$, so $(x-3)$ is a factor of P.

Problem Set

1. Use the Remainder Theorem to find the remainder for each of the following divisions.
a. $\left(x^{2}+3 x+1\right) \div(x+2)$
b. $\left(x^{3}-6 x^{2}-7 x+9\right) \div(x-3)$
c. $\left(32 x^{4}+24 x^{3}-12 x^{2}+2 x+1\right) \div(x+1)$
d. $\left(32 x^{4}+24 x^{3}-12 x^{2}+2 x+1\right) \div(2 x-1)$
e. Hint for part (d): Can you rewrite the division expression so that the divisor is in the form $(x-c)$ for some constant c ?
2. Consider the polynomial $P(x)=x^{3}+6 x^{2}-8 x-1$. Find $P(4)$ in two ways.
3. Consider the polynomial function $P(x)=2 x^{4}+3 x^{2}+12$.
a. Divide P by $x+2$ and rewrite P in the form (divisor) (quotient) + remainder.
b. Find $P(-2)$.
4. Consider the polynomial function $P(x)=x^{3}+42$.
a. Divide P by $x-4$ and rewrite P in the form (divisor)(quotient) + remainder.
b. Find $P(4)$.
5. Explain why for a polynomial function $P, P(a)$ is equal to the remainder of the quotient of P and $x-a$.
6. Is $x-5$ a factor of the function $f(x)=x^{3}+x^{2}-27 x-15$? Show work supporting your answer.
7. Is $x+1$ a factor of the function $f(x)=2 x^{5}-4 x^{4}+9 x^{3}-x+13$? Show work supporting your answer.
8. A polynomial function p has zeros of $2,2,-3,-3,-3$, and 4 . Find a possible formula for p and state its degree. Why is the degree of the polynomial not 3 ?
9. Consider the polynomial function $P(x)=x^{3}-8 x^{2}-29 x+180$.
a. Verify that $P(9)=0$. Since $P(9)=0$, what must one of the factors of P be?
b. Find the remaining two factors of P.
c. State the zeros of P.
d. Sketch the graph of P.

10. Consider the polynomial function $P(x)=2 x^{3}+3 x^{2}-2 x-3$.
a. Verify that $P(-1)=0$. Since $P(-1)=0$, what must one of the factors of P be?
b. Find the remaining two factors of P.
c. State the zeros of P.
d. Sketch the graph of P.

11. The graph to the right is of a third degree polynomial function f.
a. State the zeros of f.
b. Write a formula for f in factored form using c for the constant factor.
c. Use the fact that $f(-4)=-54$ to find the constant factor.
d. Verify your equation by using the fact that $f(1)=11$.

12. Find the value of k so that $\left(x^{3}-k x^{2}+2\right) \div(x-1)$ has remainder 8 .
13. Find the value k so that $\left(k x^{3}+x-k\right) \div(x+2)$ has remainder 16 .
14. Show that $x^{51}-21 x+20$ is divisible by $x-1$.
15. Show that $x+1$ is a factor of $19 x^{42}+18 x-1$.

Write a polynomial function that meets the stated conditions.
16. The zeros are -2 and 1 .
17. The zeros are $-1,2$, and 7 .
18. The zeros are $-\frac{1}{2}$ and $\frac{3}{4}$.
19. The zeros are $-\frac{2}{3}$ and 5 , and the constant term of the polynomial is -10 .
20. The zeros are 2 and $-\frac{3}{2}$, the polynomial has degree 3 and there are no other zeros.

