

Lesson 24: Multiplying and Dividing Rational Expressions

Classwork

If a, b, c, and d are rational expressions with $b \neq 0$, $d \neq 0$, then $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$

Example 1

Make a conjecture about the product $\frac{x^3}{4y} \cdot \frac{y^2}{x}$. What will it be? Explain your conjecture and give evidence that it is correct.

Example 2

Find the following product:

$$\left(\frac{3x-6}{2x+6}\right) \cdot \left(\frac{5x+15}{4x+8}\right).$$

Lesson 24: Date: Multiplying and Dividing Rational Expressions 7/21/14

S.113

Exercises 1–3

1. Summarize what you have learned so far with your neighbor.

2. Find the following product and reduce to lowest terms: $\left(\frac{2x+6}{x^2+x-6}\right) \cdot \left(\frac{x^2-4}{2x}\right)$.

3. Find the following product and reduce to lowest terms: $\left(\frac{4n-12}{3m+6}\right)^{-2} \cdot \left(\frac{n^2-2n-3}{m^2+4m+4}\right)$.

If a, b, c, and d are rational expressions with $b \neq 0$, $c \neq 0$, and $d \neq 0$, then

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Multiplying and Dividing Rational Expressions 7/21/14

Example 3

Find the quotient and reduce to lowest terms: $\frac{x^2-4}{3x} \div \frac{x-2}{2x}$.

Exercises 4–5

4. Find the quotient and reduce to lowest terms: $\frac{x^2 - 5x + 6}{x + 4} \div \frac{x^2 - 9}{x^2 + 5x + 4}$.

5. Simplify the rational expression.

(x+2)	١
$(x^2 - 2x - 3)$	/
$(x^2 - x - 6)$	١
$\sqrt{x^2+6x+5}$	J

Multiplying and Dividing Rational Expressions 7/21/14

S.115

Lesson Summary

In this lesson we extended multiplication and division of rational numbers to multiplication and division of rational expressions.

- To multiply two rational expressions, multiply the numerators together and multiply the denominators together, and then reduce to lowest terms.
- To divide one rational expression by another, multiply the first by the multiplicative inverse of the second, and reduce to lowest terms.
- To simplify a complex fraction, apply the process for dividing one rational expression by another.

Problem Set

1. Complete the following operations:

a. Multiply
$$\frac{1}{3}(x-2)$$
 by 9.b. Divide $\frac{1}{4}(x-8)$ by $\frac{1}{12}$.c. Multiply $\frac{1}{4}(\frac{1}{3}x+2)$ by 12.d. Divide $\frac{1}{3}(\frac{2}{5}x-\frac{1}{5})$ by $\frac{1}{15}$.e. Multiply $\frac{2}{3}(2x+\frac{2}{3})$ by $\frac{9}{4}$.f. Multiply $0.03(4-x)$ by 100.

2. Simplify each of the following expressions.

Lesson 24: Date: Multiplying and Dividing Rational Expressions 7/21/14

S.116

3. Simplify the following complex rational expressions.

a.
$$\frac{\left(\frac{4a}{6b^2}\right)}{\left(\frac{20a^3}{12b}\right)}$$

b.
$$\frac{\left(\frac{x-2}{x^2-1}\right)}{\left(\frac{x^2-4}{x-6}\right)}$$

c.
$$\frac{\left(\frac{x^2+2x-3}{x^2+3x-4}\right)}{\left(\frac{x^2+x-6}{x+4}\right)}$$

- 4. Suppose that $x = \frac{t^2+3t-4}{3t^2-3}$ and $y = \frac{t^2+2t-8}{2t^2-2t-4}$, for $t \neq 1$, $t \neq -1$, $t \neq 2$, and $t \neq -4$. Show that the value of x^2y^{-2} does not depend on the value of t.
- 5. Determine which of the following numbers is larger without using a calculator, $\frac{15^{16}}{16^{15}}$ or $\frac{20^{24}}{24^{20}}$. (Hint: We can compare two positive quantities a and b by computing the quotient $\frac{a}{b}$. If $\frac{a}{b} > 1$, then a > b. Likewise, if $0 < \frac{a}{b} < 1$, then a < b.)
- 6. One of two numbers can be represented by the rational expression $\frac{x-2}{x}$, where $x \neq 0$ and $x \neq 2$.
 - a. Find a representation of the second number if the product of the two numbers is 1.
 - b. Find a representation of the second number if the product of the two numbers is 0.

