Lesson 24: Multiplying and Dividing Rational Expressions

Classwork

If a, b, c, and d are rational expressions with $b \neq 0, d \neq 0$, then

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Example 1
Make a conjecture about the product $\frac{x^{3}}{4 y} \cdot \frac{y^{2}}{x}$. What will it be? Explain your conjecture and give evidence that it is correct.

Example 2

Find the following product:

$$
\left(\frac{3 x-6}{2 x+6}\right) \cdot\left(\frac{5 x+15}{4 x+8}\right)
$$

Exercises 1-3

1. Summarize what you have learned so far with your neighbor.
2. Find the following product and reduce to lowest terms: $\left(\frac{2 x+6}{x^{2}+x-6}\right) \cdot\left(\frac{x^{2}-4}{2 x}\right)$.
3. Find the following product and reduce to lowest terms: $\left(\frac{4 n-12}{3 m+6}\right)^{-2} \cdot\left(\frac{n^{2}-2 n-3}{m^{2}+4 m+4}\right)$.

If a, b, c, and d are rational expressions with $b \neq 0, c \neq 0$, and $d \neq 0$, then

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

Example 3

Find the quotient and reduce to lowest terms: $\frac{x^{2}-4}{3 x} \div \frac{x-2}{2 x}$.

Exercises 4-5

4. Find the quotient and reduce to lowest terms: $\frac{x^{2}-5 x+6}{x+4} \div \frac{x^{2}-9}{x^{2}+5 x+4}$.
5. Simplify the rational expression.

$$
\frac{\left(\frac{x+2}{x^{2}-2 x-3}\right)}{\left(\frac{x^{2}-x-6}{x^{2}+6 x+5}\right)}
$$

Lesson Summary

In this lesson we extended multiplication and division of rational numbers to multiplication and division of rational expressions.

- To multiply two rational expressions, multiply the numerators together and multiply the denominators together, and then reduce to lowest terms.
- To divide one rational expression by another, multiply the first by the multiplicative inverse of the second, and reduce to lowest terms.
- To simplify a complex fraction, apply the process for dividing one rational expression by another.

Problem Set

1. Complete the following operations:
a. Multiply $\frac{1}{3}(x-2)$ by 9 .
b. Divide $\frac{1}{4}(x-8)$ by $\frac{1}{12}$.
c. Multiply $\frac{1}{4}\left(\frac{1}{3} x+2\right)$ by 12 .
d. Divide $\frac{1}{3}\left(\frac{2}{5} x-\frac{1}{5}\right)$ by $\frac{1}{15}$.
e. Multiply $\frac{2}{3}\left(2 x+\frac{2}{3}\right)$ by $\frac{9}{4}$.
f. Multiply $0.03(4-x)$ by 100 .
2. Simplify each of the following expressions.
a. $\left(\frac{a^{3} b^{2}}{c^{2} d^{2}} \cdot \frac{c}{a b}\right) \div \frac{a}{c^{2} d^{3}}$
b. $\frac{a^{2}+6 a+9}{a^{2}-9} \cdot \frac{3 a-9}{a+3}$
c. $\frac{6 x}{4 x-16} \div \frac{4 x}{x^{2}-16}$
d. $\frac{3 x^{2}-6 x}{3 x+1} \cdot \frac{x+3 x^{2}}{x^{2}-4 x+4}$
e. $\frac{2 x^{2}-10 x+12}{x^{2}-4} \cdot \frac{2+x}{3-x}$
f. $\frac{a-2 b}{a+2 b} \div\left(4 b^{2}-a^{2}\right)$
g. $\frac{d+c}{c^{2}+d^{2}} \div \frac{c^{2}-d^{2}}{d^{2}-d c}$
h. $\frac{12 a^{2}-7 a b+b^{2}}{9 a^{2}-b^{2}} \div \frac{16 a^{2}-b^{2}}{3 a b+b^{2}}$
i. $\left(\frac{x-3}{x^{2}-4}\right)^{-1} \cdot\left(\frac{x^{2}-x-6}{x-2}\right)$
j. $\left(\frac{x-2}{x^{2}+1}\right)^{-3} \div\left(\frac{x^{2}-4 x+4}{x^{2}-2 x-3}\right)$
k. $\frac{6 x^{2}-11 x-10}{6 x^{2}-5 x-6} \cdot \frac{6-4 x}{25-20 x+4 x^{2}}$
I. $\frac{3 x^{3}-3 a^{2} x}{x^{2}-2 a x+a^{2}} \cdot \frac{a-x}{a^{3} x+a^{2} x^{2}}$
3. Simplify the following complex rational expressions.
a. $\frac{\left(\frac{4 a}{6 b^{2}}\right)}{\left(\frac{20 a^{3}}{12 b}\right)}$
b. $\frac{\left(\frac{x-2}{x^{2}-1}\right)}{\left(\frac{x^{2}-4}{x-6}\right)}$
c. $\frac{\left(\frac{x^{2}+2 x-3}{x^{2}+3 x-4}\right)}{\left(\frac{x^{2}+x-6}{x+4}\right)}$
4. Suppose that $x=\frac{t^{2}+3 t-4}{3 t^{2}-3}$ and $y=\frac{t^{2}+2 t-8}{2 t^{2}-2 t-4}$, for $t \neq 1, t \neq-1, t \neq 2$, and $t \neq-4$. Show that the value of $x^{2} y^{-2}$ does not depend on the value of t.
5. Determine which of the following numbers is larger without using a calculator, $\frac{15^{16}}{16^{15}}$ or $\frac{20^{24}}{24^{20}}$. (Hint: We can compare two positive quantities a and b by computing the quotient $\frac{a}{b}$. If $\frac{a}{b}>1$, then $a>b$. Likewise, if $0<\frac{a}{b}<1$, then $a<b$.)
6. One of two numbers can be represented by the rational expression $\frac{x-2}{x}$, where $x \neq 0$ and $x \neq 2$.
a. Find a representation of the second number if the product of the two numbers is 1.
b. Find a representation of the second number if the product of the two numbers is 0 .
