Lesson 28: A Focus on Square Roots

Classwork

Exercises 1-4

For Exercises 1-4, describe each step taken to solve the equation. Then, check the solution to see if it is valid. If it is not a valid solution, explain why.

1. $\sqrt{x}-6=4$
$\sqrt{x}=10$
$x=100$
2. $\sqrt[3]{x}-6=4$

$$
\begin{aligned}
\sqrt[3]{x} & =10 \\
x & =1000
\end{aligned}
$$

3. $\sqrt{x}+6=4$
4. $\sqrt[3]{x}+6=4$

Example 1

Solve the radical equation. Be sure to check your solutions.

$$
\sqrt{3 x+5}-2=-1
$$

Exercises 5-15

Solve each radical equation. Be sure to check your solutions.
5. $\sqrt{2 x-3}=11$
6. $\sqrt[3]{6-x}=-3$
7. $\sqrt{x+5}-9=-12$
8. $\sqrt{4 x-7}=\sqrt{3 x+9}$
9. $-12 \sqrt{x-6}=18$
10. $3 \sqrt[3]{x+2}=12$
11. $\sqrt{x^{2}-5}=2$
12. $\sqrt{x^{2}+8 x}=3$

Multiply each expression.
13. $(\sqrt{x}+2)(\sqrt{x}-2)$
14. $(\sqrt{x}+4)(\sqrt{x}+4)$
15. $(\sqrt{x-5})(\sqrt{x-5})$

Example 2

Rationalize the denominator in each expression. That is, rewrite each expression so that the fraction has a rational expression in the denominator.
a. $\frac{x-9}{\sqrt{x-9}}$
b. $\frac{x-9}{\sqrt{x}+3}$

Exercises 16-18

16. Rewrite $\frac{1}{\sqrt{x}-5}$ in an equivalent form with a rational expression in the denominator.
17. Solve the radical equation $\frac{3}{\sqrt{x+3}}=1$. Be sure to check for extraneous solutions.
18. Without solving the radical equation $\sqrt{x+5}+9=0$, how could you tell that it has no real solution?

Problem Set

1. a. If $\sqrt{x}=9$, then what is the value of x ?
b. If $x^{2}=9$, then what is the value of x ?
c. Is there a value of x such that $\sqrt{x+5}=0$? If yes, what is the value? If no, explain why not.
d. Is there a value of x such that $\sqrt{x}+5=0$? If yes, what is the value? If no, explain why not.
2. a. Is the statement $\sqrt{x^{2}}=x$ true for all x-values? Explain.
b. Is the statement $\sqrt[3]{x^{3}}=x$ true for all x-values? Explain.

Rationalize the denominator in each expression.
3. $\frac{4-x}{2+\sqrt{x}}$
4. $\frac{2}{\sqrt{x-12}}$
5. $\frac{1}{\sqrt{x+3}-\sqrt{x}}$

Solve each equation and check the solutions.
6. $\sqrt{x+6}=3$
7. $2 \sqrt{x+3}=6$
8. $\sqrt{x+3}+6=3$
9. $\sqrt{x+3}-6=3$
10. $16=8+\sqrt{x}$
11. $\sqrt{3 x-5}=7$
12. $\sqrt{2 x-3}=\sqrt{10-x}$
13. $3 \sqrt{x+2}+\sqrt{x-4}=0$
14. $\frac{\sqrt{x+9}}{4}=3$
15. $\frac{12}{\sqrt{x+9}}=3$
16. $\sqrt{x^{2}+9}=5$
17. $\sqrt{x^{2}-6 x}=4$
18. $\frac{5}{\sqrt{x-2}}=5$
19. $\frac{5}{\sqrt{x}-2}=5$
20. $\sqrt[3]{5 x-3}+8=6$
21. $\sqrt[3]{9-x}=6$
22. Consider the inequality $\sqrt{x^{2}+4 x}>0$. Determine whether each x-value is a solution to the inequality.
a. $x=-10$
b. $x=-4$
c. $x=10$
d. $\quad x=4$
23. Show that $\frac{a-b}{\sqrt{a}-\sqrt{b}}=\sqrt{a}+\sqrt{b}$ for all values of a and b such that $a>0$ and $b>0$ and $a \neq b$.
24. Without actually solving the equation, explain why the equation $\sqrt{x+1}+2=0$ has no solution.

