

Lesson 29: Solving Radical Equations

Classwork

Example 1

Solve the equation $6 = x + \sqrt{x}$.

Exercises 1–4

Solve.

1. $3x = 1 + 2\sqrt{x}$

2. $3 = 4\sqrt{x} - x$

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

engage^{ny}

ALGEBRA II

3. $\sqrt{x+5} = x - 1$

4. $\sqrt{3x+7} + 2\sqrt{x-8} = 0$

Example 2

Solve the equation $\sqrt{x} + \sqrt{x+3} = 3$

engage^{ny}

ALGEBRA II

Exercises 5–6

Solve the following equations.

5. $\sqrt{x-3} + \sqrt{x+5} = 4$

 $6. \quad 3 + \sqrt{x} = \sqrt{x + 81}$

Solving Radical Equations 12/14/14

engage^{ny}

Lesson Summary

If a = b and n is an integer, then $a^n = b^n$. However, the converse is not necessarily true. The statement $a^n = b^n$ does not imply that a = b. Therefore, it is necessary to check for extraneous solutions when both sides of an equation are raised to an exponent.

Problem Set

Solve.

- 1. $\sqrt{2x-5} \sqrt{x+6} = 0$ 2. $\sqrt{2x-5} + \sqrt{x+6} = 0$

 3. $\sqrt{x-5} \sqrt{x+6} = 2$ 4. $\sqrt{2x-5} \sqrt{x+6} = 2$

 5. $\sqrt{x+4} = 3 \sqrt{x}$ 6. $\sqrt{x+4} = 3 + \sqrt{x}$
- 7. $\sqrt{x+3} = \sqrt{5x+6} 3$ 8. $\sqrt{2x+1} = x - 1$
- 9. $\sqrt{x+12} + \sqrt{x} = 6$ 10. $2\sqrt{x} = 1 \sqrt{4x-1}$
- 11. $2x = \sqrt{4x 1}$ 12. $\sqrt{4x 1} = 2 2x$
- 13. $x + 2 = 4\sqrt{x 2}$ 14. $\sqrt{2x 8} + \sqrt{3x 12} = 0$
- 15. $x = 2\sqrt{x-4} + 4$ 16. $x 2 = \sqrt{9x 36}$

17. Consider the right triangle *ABC* shown to the right, with AB = 8 and BC = x.

- a. Write an expression for the length of the hypotenuse in terms of *x*.
- b. Find the value of x for which AC AB = 9.
- 18. Consider the right triangle *ABC* shown to the right, where AD = DC and \overline{BD} is the altitude of the triangle.
 - a. If the length of \overline{BD} is x cm and the length of \overline{AC} is 18 cm, write an expression for the lengths of \overline{AB} and \overline{BC} in terms of x.

12/14/14

- b. Write an expression for the perimeter of $\triangle ABC$ in terms of *x*.
- c. Find the value of x for which the perimeter of $\triangle ABC$ is equal to 38 cm.

Solving Radical Equations

engac

Lesson 29:

Date:

COMMON

CORE

