

Lesson 39: Factoring Extended to the Complex Realm

Classwork

Opening Exercise

Rewrite each expression as a polynomial in standard form.

a. (x + i)(x - i)

b. (x + 5i)(x - 5i)

c. (x - (2 + i))(x - (2 - i))

Exercises 1–4

Completely factor the following polynomial expressions.

1. $x^2 + 9$

2. $x^2 + 5$

Factoring Extended to the Complex Realm 7/22/14

- 3. Consider the polynomial $P(x) = x^4 3x^2 4$.
 - a. What are the solutions to $x^4 3x^2 4 = 0$?

b. How many *x*-intercepts does the graph of the equation $y = x^4 - 3x^2 - 4$ have? What are the coordinates of the *x*-intercepts?

c. Are solutions to the polynomial equation P(x) = 0 the same as the *x*-intercepts of the graph of y = P(x)? Justify your reasoning.

- 4. Write a polynomial *P* with the lowest possible degree that has the given solutions. Explain how you generated each answer.
 - a. -2, 3, -4*i*, 4*i*

b. -1, 3*i*

c. **0**, **2**, **1** + *i*, **1** - *i*

d. $\sqrt{2}, -\sqrt{2}, 3, 1+2i$

e. $\sqrt{2}, -\sqrt{2}, 3, 1+2i$

Factoring Extended to the Complex Realm 7/22/14

Lesson Summary

- Polynomial equations with real coefficients can have real or complex solutions or they can have both.
- Complex solutions to polynomial equations with real coefficients are always members of a conjugate pair.
- Real solutions to polynomial equations are the same as *x*-intercepts of the associated graph, but complex solutions are not.

Problem Set

- 1. Rewrite each expression in standard form.
 - a. (x + 3i)(x 3i)
 - b. (x a + bi)(x (a + bi))
 - c. (x+2i)(x-i)(x+i)(x-2i)
 - d. $(x+i)^2 \cdot (x-i)^2$
- 2. Suppose in Problem 1 that you had no access to paper, writing utensils, or technology. How do you know that the expressions in parts (a)–(d) are polynomials with real coefficients?
- 3. Write a polynomial equation of degree 4 in standard form that has the solutions i, -i, 1, -1.
- 4. Explain the difference between *x*-intercepts and solutions to an equation. Give an example of a polynomial with real coefficients that has twice as many solutions as *x*-intercepts. Write it in standard form.
- 5. Find the solutions to $x^4 5x^2 36 = 0$ and the *x*-intercepts of the graph of $y = x^4 5x^2 36$.
- 6. Find the solutions to $2x^4 24x^2 + 40 = 0$ and the *x*-intercepts of the graph of $y = 2x^4 24x^2 + 40$.
- 7. Find the solutions to $x^4 64 = 0$ and the *x*-intercepts of the graph of $y = x^4 64$.
- 8. Use the fact that $x^4 + 64 = (x^2 4x + 8)(x^2 + 4x + 8)$ to explain how you know that the graph of $y = x^4 + 64$ has no *x*-intercepts. You need not find the solutions.

Factoring Extended to the Complex Realm 7/22/14

engage^{ny}

