Lesson 39: Factoring Extended to the Complex Realm

Classwork

Opening Exercise

Rewrite each expression as a polynomial in standard form.
a. $(\boldsymbol{x}+\boldsymbol{i})(\boldsymbol{x}-\boldsymbol{i})$
b. $(x+5 i)(x-5 i)$
c. $\quad(x-(2+i))(x-(2-i))$

Exercises 1-4

Completely factor the following polynomial expressions.

1. $x^{2}+9$
2. $x^{2}+5$
3. Consider the polynomial $P(x)=x^{4}-3 x^{2}-4$.
a. What are the solutions to $x^{4}-3 x^{2}-4=0$?
b. How many x-intercepts does the graph of the equation $y=x^{4}-3 x^{2}-4$ have? What are the coordinates of the x-intercepts?
c. Are solutions to the polynomial equation $P(x)=0$ the same as the x-intercepts of the graph of $y=P(x)$? Justify your reasoning.
4. Write a polynomial P with the lowest possible degree that has the given solutions. Explain how you generated each answer.
a. $-2,3,-4 i, 4 i$
b. $-1,3 i$
c. $\mathbf{0}, \mathbf{2}, \mathbf{1}+\boldsymbol{i}, \mathbf{1}-\boldsymbol{i}$
d. $\sqrt{2},-\sqrt{2}, 3,1+2 i$
e. $\sqrt{2},-\sqrt{2}, 3,1+2 i$

Lesson Summary

- Polynomial equations with real coefficients can have real or complex solutions or they can have both.
- Complex solutions to polynomial equations with real coefficients are always members of a conjugate pair.
- Real solutions to polynomial equations are the same as \boldsymbol{x}-intercepts of the associated graph, but complex solutions are not.

Problem Set

1. Rewrite each expression in standard form.
a. $\quad(x+3 i)(x-3 i)$
b. $\quad(\boldsymbol{x}-\boldsymbol{a}+\boldsymbol{b i})(\boldsymbol{x}-(\boldsymbol{a}+\boldsymbol{b i}))$
c. $\quad(x+2 i)(x-i)(x+i)(x-2 i)$
d. $(x+i)^{2} \cdot(x-i)^{2}$
2. Suppose in Problem 1 that you had no access to paper, writing utensils, or technology. How do you know that the expressions in parts (a)-(d) are polynomials with real coefficients?
3. Write a polynomial equation of degree 4 in standard form that has the solutions $i,-i, 1,-1$.
4. Explain the difference between x-intercepts and solutions to an equation. Give an example of a polynomial with real coefficients that has twice as many solutions as x-intercepts. Write it in standard form.
5. Find the solutions to $x^{4}-5 x^{2}-36=0$ and the x-intercepts of the graph of $y=x^{4}-5 x^{2}-36$.
6. Find the solutions to $2 x^{4}-24 x^{2}+40=0$ and the x-intercepts of the graph of $y=2 x^{4}-24 x^{2}+40$.
7. Find the solutions to $x^{4}-64=0$ and the x-intercepts of the graph of $y=x^{4}-64$.
8. Use the fact that $x^{4}+64=\left(x^{2}-4 x+8\right)\left(x^{2}+4 x+8\right)$ to explain how you know that the graph of $y=x^{4}+64$ has no x-intercepts. You need not find the solutions.
