Lesson 4: From Circle-ometry to Trigonometry

Classwork

Opening Exercises

1. Find the lengths of the sides of the right triangles below, each of which has hypotenuse of length 1 .

2. Given the following right triangle $\triangle A B C$ with $m(\angle A)=\theta$, find $\sin \left(\theta^{\circ}\right)$ and $\cos \left(\theta^{\circ}\right)$.

Example 1

Suppose that point P is the point on the unit circle obtained by rotating the initial ray through 30°. Find $\sin \left(30^{\circ}\right)$ and $\cos \left(30^{\circ}\right)$.

What is the length $O Q$ of the horizontal leg of our triangle?

What is the length $Q P$ of the vertical leg of our triangle?

What is $\sin \left(30^{\circ}\right)$?

What is $\cos \left(30^{\circ}\right)$?

Exercises 1-2

1. Suppose that P is the point on the unit circle obtained by rotating the initial ray through 45°. Find $\sin \left(45^{\circ}\right)$ and $\cos \left(45^{\circ}\right)$.
2. Suppose that P is the point on the unit circle obtained by rotating the initial ray through 60°. Find $\sin \left(60^{\circ}\right)$ and $\cos \left(60^{\circ}\right)$.

Example 2

Suppose that P is the point on the unit circle obtained by rotating the initial ray through 150°. Find $\sin \left(150^{\circ}\right)$ and $\cos \left(150^{\circ}\right)$.

Discussion

Exercises 3-5

3. Suppose that P is the point on the unit circle obtained by rotating the initial ray through 120 degrees. Find the measure of the reference angle for 120°, then find $\sin \left(120^{\circ}\right)$ and $\cos \left(120^{\circ}\right)$.
4. Suppose that P is the point on the unit circle obtained by rotating the initial ray through 240°, . Find the measure of the reference angle for 240°, then find $\sin \left(240^{\circ}\right)$ and $\cos \left(240^{\circ}\right)$.
5. Suppose that P is the point on the unit circle obtained by rotating the initial ray through 330 degrees. Find the measure of the reference angle for 330°, then find $\sin \left(330^{\circ}\right)$ and $\cos \left(330^{\circ}\right)$.

Discussion

Lesson Summary

In this lesson we formalized the idea of the height and co-height of a Ferris wheel and defined the sine and cosine functions that give the x and y coordinates of the intersection of the unit circle and the initial ray rotated through θ degrees, for most values of θ with $0<\theta<360$.

- The value of $\cos (\theta)$ is the x-coordinate of the intersection point of the terminal ray and the unit circle.
- The value of $\sin (\theta)$ is the y-coordinate of the intersection point of the terminal ray and the unit circle.
- The sine and cosine functions have domain of all real numbers and range $[-1,1]$.

Problem Set

1. Fill in the chart, and write in the reference angles and the values of the sine and cosine for the indicated rotation numbers.

Amount of rotation, θ, in degrees	Measure of Reference Angle	$\cos \theta$	$\sin \theta$
330°			
90°			
120°			
150°			
135°			
270°			
225°			

2. Using geometry, Jennifer correctly calculated that $\sin \left(15^{\circ}\right)=\frac{1}{2} \sqrt{2-\sqrt{3}}$. Based on this information, fill in the chart:

Amount of rotation, θ, in degrees	Measure of Reference Angle	$\cos (\theta)$	$\sin (\theta)$
15°			
165°			
195°			
345°			

3. Suppose $0<\theta<90$ and $\sin (\theta)=\frac{1}{\sqrt{3}}$. What is the value of $\cos (\theta)$?
4. Suppose $90^{\circ}<\theta<180^{\circ}$ and $\sin (\theta)=\frac{1}{\sqrt{3}}$. What is the value of $\cos (\theta)$?
5. If $\cos (\theta)=-\frac{1}{\sqrt{5}}$, what are two possible values of $\sin (\theta)$?
6. Johnny rotated the initial ray through θ degrees, found the intersection of the terminal ray with the unit circle, and calculated that $\sin (\theta)=\sqrt{2}$. Ernesto insists that Johnny made a mistake in his calculation. Explain why Ernesto is correct.
7. If $\sin (\theta)=0.5$, and we know that $\cos (\theta)<0$, then what is the smallest possible positive value of θ ?
8. The vertices of triangle $\triangle A B C$ have coordinates $A=(0,0), B=(12,5)$, and $C=(12,0)$.
a. Argue that $\triangle A B C$ is a right triangle.
b. What are the coordinates where the hypotenuse of $\triangle A B C$ intersects the unit circle $x^{2}+y^{2}=1$?
c. Let θ denote the degrees of rotation from $\overrightarrow{A C}$ to $\overrightarrow{A B}$. Calculate $\sin (\theta)$ and $\cos (\theta)$.
9. The vertices of triangle $\triangle A B C$ have coordinates $A=(0,0), B=(4,3)$, and $C=(4,0)$. The vertices of triangle $\triangle A D E$ are at the points $A=(0,0), D=(3,4)$, and $E=(3,0)$.
a. Argue that $\triangle A B C$ is a right triangle.
b. What are the coordinates where the hypotenuse of $\triangle A B C$ intersects the unit circle $x^{2}+y^{2}=1$?
c. Let θ denote the degrees of rotation from $\overrightarrow{A C}$ to $\overrightarrow{A B}$. Calculate $\sin (\theta)$ and $\cos (\theta)$.
d. Argue that $\triangle A D E$ is a right triangle.
e. What are the coordinates where the hypotenuse of $\triangle A D E$ intersects the unit circle $x^{2}+y^{2}=1$?
f. Let ϕ denote the degrees of rotation from $\overrightarrow{A E}$ to $\overrightarrow{A D}$. Calculate $\sin \phi$ and $\cos \phi$.
g. What is the relation between the sine and cosine of θ and the sine and cosine of ϕ ?
10. Use a diagram to explain why $\sin \left(135^{\circ}\right)=\sin \left(45^{\circ}\right)$, but $\cos \left(135^{\circ}\right) \neq \cos \left(45^{\circ}\right)$.

