Lesson 5: Extending the Domain of Sine and Cosine to All Real

Numbers

Classwork

Opening Exercises

a. Suppose that a group of 360 coworkers pool their money, buying a single lottery ticket every day with the understanding that if any ticket was a winning ticket, the group would split the winnings evenly, and they would donate any left over money to the local high school. Using this strategy, the group won $\$ 1,000$. How much money was donated to the school?
b. What if the winning ticket was worth $\$ 250,000$? Using the same plan as in part (a), how much money would be donated to the school?
c. What if the winning ticket was worth $\$ 540,000$? Using the same plan as in part (a), how much money would be donated to the school?

Exercises 1-5

1. Find $\cos \left(405^{\circ}\right)$ and $\sin \left(405^{\circ}\right)$. Identify the measure of the reference angle.
2. Find $\cos \left(840^{\circ}\right)$ and $\sin \left(840^{\circ}\right)$. Identify the measure of the reference angle.
3. Find $\cos \left(1680^{\circ}\right)$ and $\sin \left(1680^{\circ}\right)$. Identify the measure of the reference angle.
4. Find $\cos \left(2115^{\circ}\right)$ and $\sin \left(2115^{\circ}\right)$. Identify the measure of the reference angle.
5. Find $\cos \left(720030^{\circ}\right)$ and $\sin \left(720030^{\circ}\right)$. Identify the measure of the reference angle.

Exercises 6-10

6. Find $\cos \left(-30^{\circ}\right)$ and $\sin \left(-30^{\circ}\right)$. Identify the measure of the reference angle.
7. Find $\cos \left(-135^{\circ}\right)$ and $\sin \left(-135^{\circ}\right)$. Identify the measure of the reference angle.
8. Find $\cos \left(-1320^{\circ}\right)$ and $\sin \left(-1320^{\circ}\right)$. Identify the measure of the reference angle.
9. Find $\cos \left(-2205^{\circ}\right)$ and $\sin \left(-2205^{\circ}\right)$. Identify the measure of the reference angle.
10. Find $\cos \left(-2835^{\circ}\right)$ and $\sin \left(-2835^{\circ}\right)$. Identify the measure of the reference angle.

Discussion

Case 1: What about the values of the sine and cosine function of other amounts of rotation that produce a terminal ray along the positive x-axis, such as 1080° ?

Our definition of a reference angle is the angle formed by the terminal ray and the x-axis, but our terminal ray lies along the x-axis so the terminal ray and the x-axis form a zero angle.

How would we assign values to $\cos \left(1080^{\circ}\right)$ and $\sin \left(1080^{\circ}\right)$?

What if we rotated around 24000°, which is 400 turns? What are $\cos \left(24000^{\circ}\right)$ and $\sin \left(24000^{\circ}\right)$?

State a generalization of these results:
If $\theta=n \cdot 360^{\circ}$, for some integer n, then $\cos (\theta)=$ \qquad , and $\sin (\theta)=$ \qquad -.

Case 2: What about the values of the sine and cosine function of other amounts of rotation that produce a terminal ray along the negative x-axis, such as 540° ?

How would we assign values to $\cos \left(540^{\circ}\right)$ and $\sin \left(540^{\circ}\right)$?

What are the values of $\cos \left(900^{\circ}\right)$ and $\sin \left(900^{\circ}\right)$? How do you know?

State a generalization of these results:
If $\theta=n \cdot 360^{\circ}+180^{\circ}$, for some integer n, then $\cos (\theta)=$ \qquad and $\sin (\theta)=$ \qquad -.

Case 3: What about the values of the sine and cosine function for rotations that are 90° more than a number of full turns, such as -630° ?
How would we assign values to $\cos \left(-630^{\circ}\right)$, and $\sin \left(-630^{\circ}\right)$?

Can we generalize to any rotation that produces a terminal ray along the positive y-axis?

State a generalization of these results:
If $\theta=n \cdot 360^{\circ}+90^{\circ}$, for some integer n, then $\cos (\theta)=$ \qquad , and $\sin (\theta)=$ \qquad -.

Case 4: What about the values of the sine and cosine function for rotations whose terminal ray lies along the negative y axis, such as -810° ?

How would we assign values to $\cos \left(-810^{\circ}\right)$ and $\sin \left(-810^{\circ}\right)$?

Can we generalize to any rotation that produces a terminal ray along the negative y-axis?

State a generalization of these results:
If $\theta=n \cdot 360^{\circ}+270^{\circ}$, for some integer n, then $\cos (\theta)=$ \qquad and $\sin (\theta)=$ \qquad .

Discussion

Let θ be any real number. In the Cartesian plane, rotate the initial ray by θ degrees about the origin. Intersect the resulting terminal ray with the unit circle to get a point $\left(x_{\theta}, y_{\theta}\right)$ in the coordinate plane. The value of $\sin (\theta)$ is y_{θ}, and the value of $\cos (\theta)$ is x_{θ}.

Lesson Summary

In this lesson we formalized the definition of the sine and cosine functions of a number of degrees of rotation, θ. We rotate the initial ray made from the positive x-axis through θ degrees, going counterclockwise if $\theta>0$ and clockwise if $\theta<0$. The point P is defined by the intersection of the terminal ray and the unit circle.

- The value of $\cos (\theta)$ is the x-coordinate of P.
- The value of $\sin (\theta)$ is the y-coordinate of P.
- The sine and cosine functions have domain of all real numbers and range $[-1,1]$.

Problem Set

1. Fill in the chart; write the quadrant where the terminal ray is located after rotation by θ, the measures of the reference angles, and the values of the sine and cosine functions for the indicated rotation numbers.

Number of degrees of rotation, θ	Quadrant	Measure of Reference Angle	$\cos (\theta)$	$\sin (\theta)$
690				
810				
1560				
1440				
855				
-330				
-4500				
-510				
-135				
-1170				

2. Using geometry, Jennifer correctly calculated that $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$. Based on this information, fill in the chart:

Number of degrees of rotation, θ	Quadrant	Measure of Reference Angle	$\cos (\theta)$	$\sin (\theta)$
525				
705				
915				
-15				
-165				
-705				

3. Suppose θ represents a quantity in degrees, and that $\sin (\theta)=0.5$. List the first six possible positive values that θ can take.
4. Suppose θ represents a quantity in degrees, and that $\sin \left(\theta^{\circ}\right)=-0.5$. List six possible negative values that θ can take.
5. Suppose θ represents a quantity in degrees. Is it possible that $\cos \left(\theta^{\circ}\right)=\frac{1}{2}$ and $\sin \left(\theta^{\circ}\right)=\frac{1}{2}$?
6. Jane says that since the reference angle for a rotation through -765° has measure 45°, then $\cos \left(-765^{\circ}\right)=$ $\cos \left(45^{\circ}\right)$, and $\sin \left(-765^{\circ}\right)=\sin \left(45^{\circ}\right)$. Explain why she is or is not correct.
7. Doug says that since the reference angle for a rotation through 765° has measure 45°, then $\cos \left(765^{\circ}\right)=\cos \left(45^{\circ}\right)$, and $\sin \left(765^{\circ}\right)=\sin \left(45^{\circ}\right)$. Explain why he is or is not correct.
