

# Lesson 11: Transforming the Graph of the Sine Function

#### Classwork

#### **Opening Exercise**

Explore your assigned parameter in the sinusoidal function  $f(x) = A \sin(\omega(x - h)) + k$ . Select several different values for your assigned parameter and explore the effects of changing the parameter's value on the graph of the function compared to the graph of  $f(x) = \sin(x)$ . Record your observations in the table below. Include written descriptions and sketches of graphs.

| <u>A-Team</u>                                                                                     | <u>ω-Team</u>                                                                                                                               |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = A\sin(x)$                                                                                 | $f(x) = \sin(\omega x)$                                                                                                                     |
| Suggested <i>A</i> values:<br>2, 3, 10, 0, -1, -2, $\frac{1}{2}$ , $\frac{1}{5}$ , $-\frac{1}{3}$ | Suggested $\omega$ values:<br>2,3,5, $\frac{1}{2}$ , $\frac{1}{4}$ , 0, -1, -2, $\pi$ , $2\pi$ , $3\pi$ , $\frac{\pi}{2}$ , $\frac{\pi}{4}$ |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |
|                                                                                                   |                                                                                                                                             |



Transforming the Graph of the Sine Function 10/28/14





| <u>k-Team</u>                                                                              | <u>h-Team</u>                                                                                       |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $f(x) = \sin(x) + k$                                                                       | $f(x) = \sin(x - h)$                                                                                |
| Suggested k values:<br>2, 3, 10, 0, -1, -2, $\frac{1}{2}$ , $\frac{1}{5}$ , $-\frac{1}{3}$ | Suggested <i>h</i> values:<br>$\pi, -\pi, \frac{\pi}{2}, -\frac{\pi}{4}, 2\pi, 2, 0, -1, -2, 5, -5$ |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |
|                                                                                            |                                                                                                     |

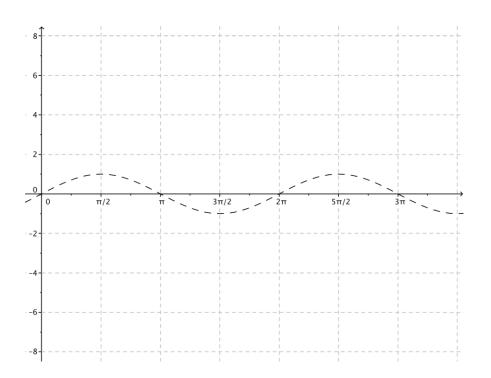


Transforming the Graph of the Sine Function 10/28/14





ALGEBRA II


**M2** 

Lesson 11

# Example

Graph the following function:

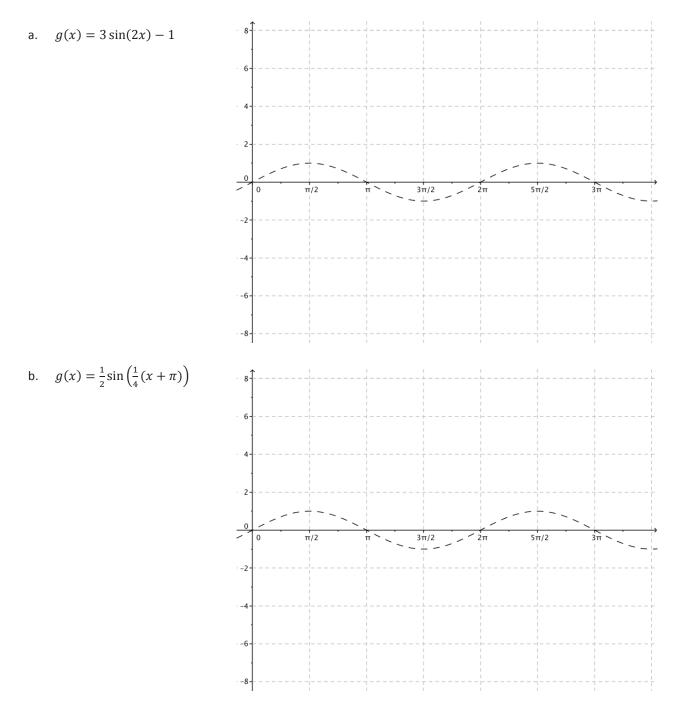
$$f(x) = 3\sin\left(4\left(x - \frac{\pi}{6}\right)\right) + 2.$$





Transforming the Graph of the Sine Function 10/28/14

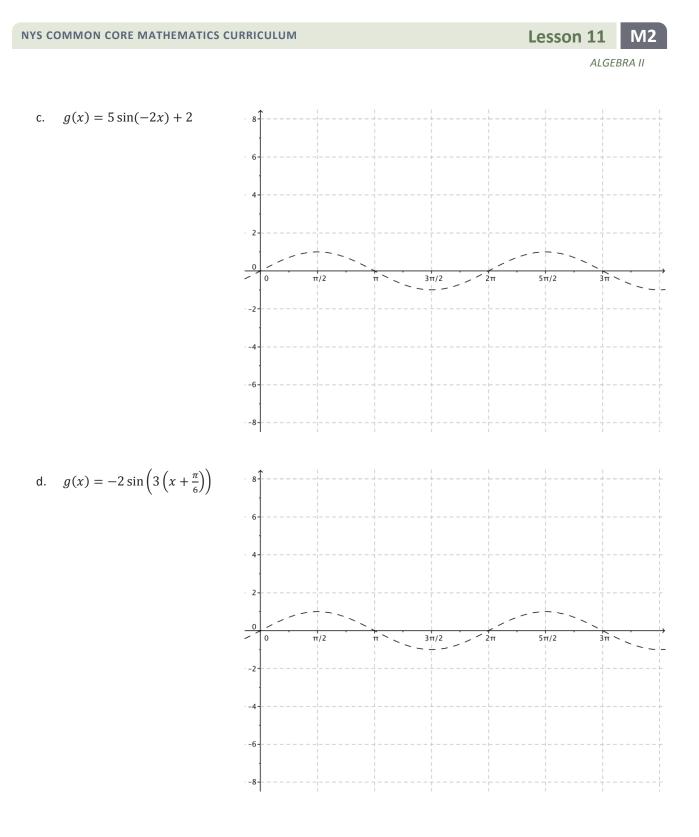



S.87





#### **Exercise**

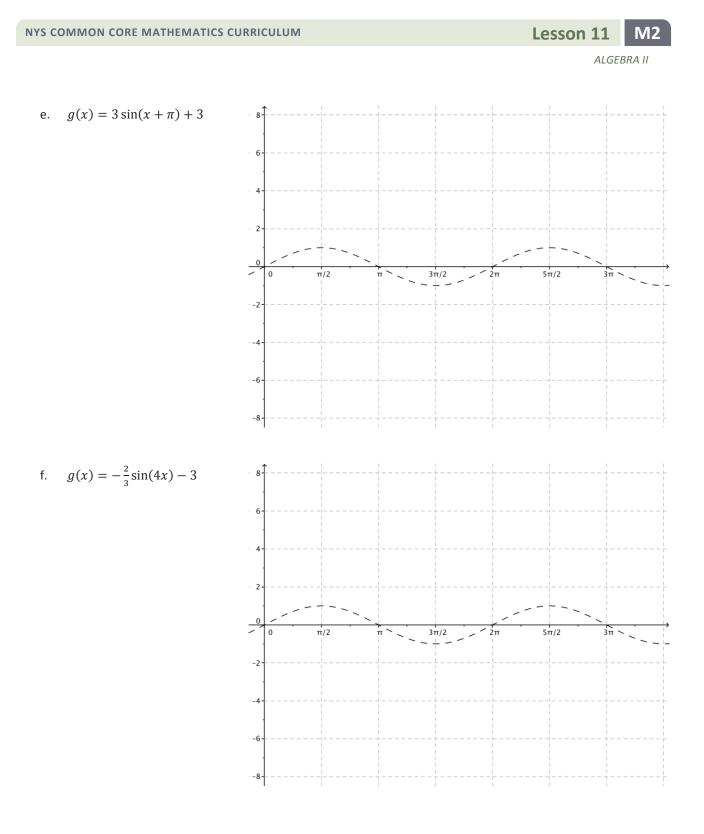

For each function, indicate the amplitude, frequency, period, phase shift, vertical translation, and equation of the midline. Graph the function together with a graph of the sine function  $f(x) = \sin(x)$  on the same axes. Graph at least one full period of each function.





Lesson 11: Date:

Transforming the Graph of the Sine Function 10/28/14

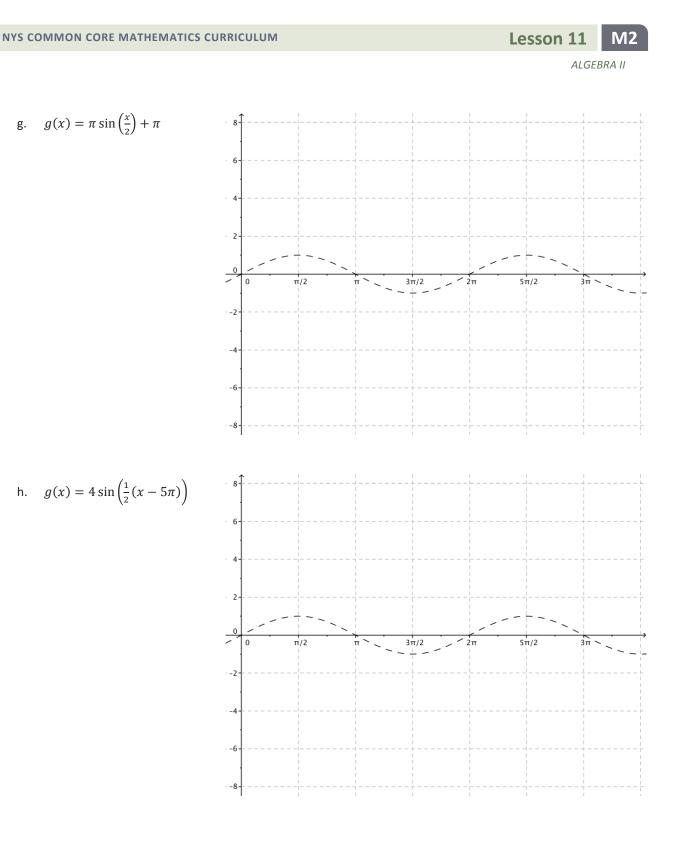





Lesson 11: Date: Transforming the Graph of the Sine Function 10/28/14

engage<sup>ny</sup>








Lesson 11: Date: Transforming the Graph of the Sine Function 10/28/14

engage<sup>ny</sup>







Lesson 11: Date: Transforming the Graph of the Sine Function 10/28/14

engage<sup>ny</sup>







### **Lesson Summary**

In this lesson, we investigated the effects of the parameters A,  $\omega$ , h, and k on the graph of the function

 $f(x) = A\sin(\omega(x-h)) + k.$ 

- The graph of y = k is the <u>midline</u>. The value of k determines the vertical translation of the graph compared to the graph of the sine function. If k > 0, then the graph shifts k units upwards. If k < 0, then the graph shifts k units downward.
- The **amplitude** of the function is |A|; the vertical distance from a maximum point to the midline of the graph is |A|.
- The **phase shift** is h. The value of h determines the horizontal translation of the graph from the graph of the sine function. If h > 0, the graph is translated h units to the right, and if h < 0, the graph is translated h units to the left.
- The <u>frequency</u> of the function is  $f = \frac{|\omega|}{2\pi}$  and the period is  $P = \frac{2\pi}{|\omega|}$ . The <u>period</u> is the vertical distance between two consecutive maximal points on the graph of the function.

These parameters affect the graph of  $f(x) = A \cos(\omega(x - h)) + k$  similarly.

# **Problem Set**

- 1. For each function, indicate the amplitude, frequency, period, phase shift, horizontal, and vertical translations, and equation of the midline. Graph the function together with a graph of the sine function f(x) = sin(x) on the same axes. Graph at least one full period of each function. No calculators allowed.
  - a.  $g(x) = 3\sin(x \frac{\pi}{4})$

b. 
$$g(x) = 5\sin(4x)$$

- c.  $g(x) = 4\sin\left(3\left(x + \frac{\pi}{2}\right)\right)$
- d.  $g(x) = 6\sin(2x + 3\pi)$  (Hint: First, rewrite the function in the form  $g(x) = A\sin(\omega(x h))$ .)
- 2. For each function, indicate the amplitude, frequency, period, phase shift, horizontal, and vertical translations, and equation of the midline. Graph the function together with a graph of the sine function f(x) = cos(x) on the same axes. Graph at least one full period of each function. No calculators allowed.

a. 
$$g(x) = \cos(3x)$$

b. 
$$g(x) = \cos\left(x - \frac{3\pi}{4}\right)$$

c. 
$$g(x) = 3\cos\left(\frac{x}{4}\right)$$

- d.  $g(x) = 3\cos(2x) 4$
- e.  $g(x) = 4\cos\left(\frac{\pi}{4} 2x\right)$  (Hint: First, rewrite the function in the form  $g(x) = A\cos\left(\omega(x-h)\right)$ .)

Transforming the Graph of the Sine Function 10/28/14





- 3. For each problem, sketch the graph of the pairs of indicated functions on the same set of axes without using a calculator or other graphing technology.
  - a.  $f(x) = \sin(4x), g(x) = \sin(4x) + 2$

b. 
$$f(x) = \sin(\frac{1}{2}x), g(x) = 3\sin(\frac{1}{2}x)$$

- c.  $f(x) = \sin(-2x), g(x) = \sin(-2x) 3$
- d.  $f(x) = 3\sin(x), g(x) = 3\sin\left(x \frac{\pi}{2}\right)$
- e.  $f(x) = -4\sin(x), g(x) = -4\sin(\frac{1}{3}x)$
- f.  $f(x) = \frac{3}{4}\sin(x), g(x) = \frac{3}{4}\sin(x-1)$

g. 
$$f(x) = \sin(2x), g(x) = \sin\left(2\left(x - \frac{\pi}{6}\right)\right)$$

h.  $f(x) = 4\sin(x) - 3$ ,  $g(x) = 4\sin\left(x - \frac{\pi}{4}\right) - 3$ 

# **Extension Problems**

- 4. Show that if the graphs of the functions  $f(x) = A \sin(\omega(x h_1)) + k$  and  $g(x) = A \sin(\omega(x h_2)) + k$  are the same, then  $h_1$  and  $h_2$  differ by an integer multiple of the period.
- 5. Show that if  $h_1$  and  $h_2$  differ by an integer multiple of the period, then the graphs of  $f(x) = A \sin(\omega(x h_1)) + k$ and  $g(x) = A \sin(\omega(x - h_2)) + k$  are the same graph.
- 6. Find the *x*-intercepts of the graph of the function  $f(x) = A \sin(\omega(x h))$  in terms of the period *P*, where  $\omega > 0$ .





Lesson 11

M2

ALGEBRA II



