Lesson 17: Trigonometric Identity Proofs

Classwork

Opening Exercise

We have seen that $\sin(\alpha + \beta) \neq \sin(\alpha) + \sin(\beta)$. So, what is $\sin(\alpha + \beta)$? Begin by completing the following table:

α	β	$sin(\alpha)$	$\sin(\beta)$	$\sin(\alpha + \beta)$	$\sin(\alpha)\cos(\beta)$	$\sin(\alpha)\sin(\beta)$	$\cos(\alpha)\cos(\beta)$	$\cos(\alpha)\sin(\beta)$
$\frac{\pi}{6}$	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{4}$	$\frac{1}{2}$		
$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1			$\frac{\sqrt{3}}{4}$	
$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$	$\frac{\sqrt{3}}{2\sqrt{2}}$			
$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1		$\frac{1}{2}$	$\frac{1}{2}$	
$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$				$\frac{\sqrt{3}}{4}$
$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1+\sqrt{3}}{2\sqrt{2}}$		$\frac{\sqrt{3}}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	

Use the following table to formulate a conjecture for $cos(\alpha + \beta)$:

α	β	$\cos(\alpha)$	$\cos(\beta)$	$\cos(\alpha+\beta)$	$\sin(\alpha)\cos(\beta)$	$\sin(\alpha)\sin(\beta)$	$\cos(\alpha)\cos(\beta)$	$\cos(\alpha)\sin(\beta)$
$\frac{\pi}{6}$	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{\sqrt{3}}{4}$
$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{\sqrt{3}}{4}$	$\frac{\sqrt{3}}{4}$	$\frac{3}{4}$
$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{\sqrt{3}}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{\sqrt{3}}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$
$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{4}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{\sqrt{3}}{4}$
$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1-\sqrt{3}}{2\sqrt{2}}$	$\frac{\sqrt{3}}{2\sqrt{2}}$	$\frac{\sqrt{3}}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$

Examples 1–2: Formulas for $sin(\alpha + \beta)$ and $cos(\alpha + \beta)$

- 1. One conjecture is that the formula for the sine of the sum of two numbers is $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$. The proof can be a little long, but it is fairly straightforward. We will prove only the case when the two numbers are positive, and their sum is less than $\frac{\pi}{2}$.
 - a. Let α and β be positive real numbers such that $0 < \alpha + \beta < \frac{\pi}{2}$.
 - b. Construct rectangle MNOP such that PR = 1, $m \angle PQR = 90^\circ$, $m \angle RPQ = \beta$, and $m \angle QPM = \alpha$. See the figure at the right.
 - c. Fill in the blanks in terms of α and β :

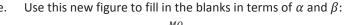
i.
$$m \angle RPO =$$
_____.

ii.
$$m \angle PRO =$$
_____.

iii. Therefore,
$$sin(\alpha + \beta) = PO$$
.

iv.
$$RQ = \sin(\underline{})$$
.

v.
$$PQ = \cos(\underline{})$$
.



i. Why does
$$\sin(\alpha) = \frac{MQ}{\cos(\beta)}$$
?

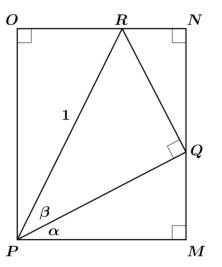
ii. Therefore,
$$MQ =$$
_____.

iii.
$$m \angle RQN =$$
 .

f. Now consider
$$\Delta RQN$$
. Since $cos(\alpha) = \frac{QN}{sin(\beta)}$

$$QN = \underline{\hspace{1cm}}.$$

g. Label these lengths and angle measurements in the figure.



- Since MNOP is a rectangle, OP = MQ + QN.
- Thus, $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$. i.

Note that we have only proven the formula for the sine of the sum of two real numbers α and β in the case where $0 < \alpha + \beta < \frac{\pi}{2}$. A proof for all real numbers α and β breaks down into cases that are proven similarly to the case we have just seen. Although we are omitting the full proof, this formula holds for all real numbers α and β .

Thus, for any real numbers α and β ,

$$sin(\alpha + \beta) = sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta)$$
.

Now let's prove our other conjecture, which is that the formula for the cosine of the sum of two numbers is $cos(\alpha + \beta) = cos(\alpha) cos(\beta) - sin(\alpha) sin(\beta)$.

Again, we will prove only the case when the two numbers are positive, and their sum is less than $\frac{\pi}{2}$. This time, we will use the sine addition formula and identities from previous lessons instead of working through a geometric proof.

Fill in the blanks in terms of α and β :

Let α and β be any real numbers. Then,

$$\cos(\alpha + \beta) = \sin\left(\frac{\pi}{2} - (\underline{\hspace{1cm}})\right)$$

$$= \sin((\underline{\hspace{1cm}}) - \beta)$$

$$= \sin((\underline{\hspace{1cm}}) + (-\beta))$$

$$= \sin(\underline{\hspace{1cm}}) \cos(-\beta) + \cos(\underline{\hspace{1cm}}) \sin(-\beta)$$

$$= \cos(\alpha) \cos(-\beta) + \sin(\alpha) \sin(-\beta)$$

$$= \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta).$$

Thus, for all real numbers α and β ,

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta).$$

Lesson 17: Date:

Trigonometric Identity Proofs 10/28/14

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

Exercises 1–2: Formulas for $sin(\alpha - \beta)$ and $cos(\alpha - \beta)$

1. Rewrite the expression $\sin(\alpha - \beta)$ as follows: $\sin(\alpha + (-\beta))$. Use the rewritten form to find a formula for the sine of the difference of two angles, recalling that the sine is an odd function.

2. Now use the same idea to find a formula for the cosine of the difference of two angles. Recall that the cosine is an even function.

Thus, for all real numbers α and β ,

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta), \text{ and}$$
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta).$$

Exercises 3-5

3. Derive a formula for $\tan(\alpha + \beta)$ in terms of $\tan(\alpha)$ and $\tan(\beta)$ for $\frac{2n+1}{2}\pi < \theta < \frac{2n+3}{2}\pi$, for any integer n. Hint: Use the addition formulas for sine and cosine.

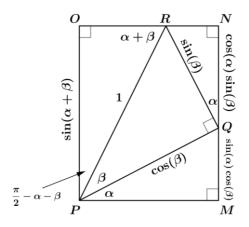
4. Derive a formula for $\sin(2u)$ in terms of $\sin(u)$ and $\cos(u)$ for all real numbers u.

5. Derive a formula for cos(2u) in terms of sin(u) and cos(u) for all real numbers u.

Problem Set

Prove the formula

 $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$ for $0 < \alpha + \beta < \frac{\pi}{2}$ using the rectangle MNOP in the figure at the right and calculating PM, RN, and RO in terms of α and β .



- Derive a formula for $\tan(2u)$ for $u \neq \frac{\pi}{4} + \frac{k\pi}{2}$ and $u \neq \frac{\pi}{2} + k\pi$, for all integers k.
- Prove that $cos(2u) = 2cos^2(u) 1$ is true for any real number u.
- Prove that $\frac{1}{\cos(x)} \cos(x) = \sin(x) \cdot \tan(x)$ is true for $x \neq \frac{\pi}{2} + k\pi$, for all integers k.
- Write as a single term: $\cos\left(\frac{\pi}{4} + \theta\right) + \cos\left(\frac{\pi}{4} \theta\right)$.
- Write as a single term: $\sin(25^\circ)\cos(10^\circ) \cos(25^\circ)\sin(10^\circ)$.
- Write as a single term: cos(2x) cos(x) + sin(2x) sin(x).
- Write as a single term: $\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{\cos(\alpha)\cos(\beta)}$, where $\cos(\alpha)\neq 0$ and $\cos(\beta)\neq 0$.
- Prove that for all values of θ , $\cos\left(\frac{3\pi}{2} + \theta\right) = \sin(\theta)$.
- 10. Prove that for all values of θ , $\cos(\pi \theta) = -\cos(\theta)$.