Lesson 3: Rational Exponents-What Are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$ ?

## Classwork

## Opening Exercise

a. What is the value of $2^{\frac{1}{2}}$ ? Justify your answer.
b. Graph $f(x)=2^{x}$ for each integer $x$ from $x=-2$ to $x=5$. Connect the points on your graph with a smooth curve.


The graph at right shows a close-up view of $f(x)=2^{x}$ for $-0.5<x<1.5$.
c. Find two consecutive integers that are over and under estimates of the value of $2^{\frac{1}{2}}$.
d. Does it appear that $2^{\frac{1}{2}}$ is halfway between the integers you specified in Exercise 1?
e. Use the graph of $f(x)=2^{x}$ to estimate the value of $2^{\frac{1}{2}}$.

f. Use the graph of $f(x)=2^{x}$ to estimate the value of $2^{\frac{1}{3}}$.

## Example 1

a. What is the $4^{\text {th }}$ root of 16 ?
b. What is the cube root of 125 ?
c. What is the $5^{\text {th }}$ root of 100,000 ?

## Exercise 1

Evaluate each expression.
a. $\sqrt[4]{81}$
b. $\sqrt[5]{32}$
c. $\sqrt[3]{9} \cdot \sqrt[3]{3}$
d. $\sqrt[4]{25} \cdot \sqrt[4]{100} \cdot \sqrt[4]{4}$

## Discussion

If $2^{\frac{1}{2}}=\sqrt{2}$ and $2^{\frac{1}{3}}=\sqrt[3]{2}$, what does $2^{\frac{3}{4}}$ equal? Explain your reasoning.

## Exercises 2-8

Rewrite each exponential expression as an $n^{\text {th }}$ root.
2. $3^{\frac{1}{2}}$
3. $11^{\frac{1}{5}}$
4. $\left(\frac{1}{4}\right)^{\frac{1}{5}}$
5. $6^{\frac{1}{10}}$

Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without radicals or exponents.
6. $2^{\frac{3}{2}}$
7. $4^{\frac{5}{2}}$
8. $\left(\frac{1}{8}\right)^{\frac{5}{3}}$
9. Show why the following statement is true:
$2^{-\frac{1}{2}}=\frac{1}{2^{\frac{1}{2}}}$

Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without radicals or exponents.
10. $4^{-\frac{3}{2}}$
11. $27^{-\frac{2}{3}}$
12. $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$

## Lesson Summary

$\boldsymbol{n}^{\text {TH }}$ root of A NUMBER: Let $a$ and $b$ be numbers, and let $n \geq 2$ be a positive integer. If $b=a^{n}$, then $a$ is an $n^{\text {th }}$ root of $b$. If $n=2$, then the root is a called a square root. If $n=3$, then the root is called a cube root.

Principal $\boldsymbol{n}^{\text {th }}$ root of a NUMBER: Let $b$ be a real number that has at least one real $n^{\text {th }}$ root. The principal $n^{\text {th }}$ root of $b$ is the real $n^{\text {th }}$ root that has the same sign as $b$ and is denoted by a radical symbol: $\sqrt[n]{b}$.
Every positive number has a unique principal $n^{\text {th }}$ root. We often refer to the principal $n^{\text {th }}$ root of $b$ as just the $n^{\text {th }}$ root of $b$. The $n^{\text {th }}$ root of 0 is 0 .
For any positive integers $m$ and $n$, and any real number $b$ for which the principal $n^{\text {th }}$ root of $b$ exists, we have

$$
\begin{gathered}
b^{\frac{1}{n}}=\sqrt[n]{b} \\
b^{\frac{m}{n}}=\sqrt[n]{b^{m}}=(\sqrt[n]{b})^{m} \\
b^{-\frac{m}{n}}=\frac{1}{\sqrt[n]{b^{m}}}
\end{gathered}
$$

## Problem Set

1. Select the expression from (A), (B), and (C) that correctly completes the statement.
(A)
(B)
(C)
a. $x^{\frac{1}{3}}$ is equivalent to $\qquad$ . - $\quad-\frac{1}{4} x$ $\frac{2}{x}$
$\frac{1}{3} x$
$\frac{2}{3} x$
$\sqrt[3]{x}$
$\frac{3}{x}$
$\sqrt[3]{x^{2}} \quad(\sqrt{x})^{3}$
b. $x^{\frac{2}{3}}$ is equivalent to $\qquad$ -.
d. $\left(\frac{4}{x}\right)^{\frac{1}{2}}$ is equivalent to $\qquad$ .
$\frac{4}{x} \quad \frac{1}{\sqrt[4]{x}}$
c. $x^{-\frac{1}{4}}$ is equivalent to $\qquad$
$\frac{4}{x^{2}} \quad \frac{2}{\sqrt{x}}$
2. Identify which of the expressions (A), (B), and (C) are equivalent to the given expression.
(A)
(B)
(C)
a. $16^{\frac{1}{2}}$
$\left(\frac{1}{16}\right)^{-\frac{1}{2}}$
$8^{\frac{2}{3}}$
$64^{\frac{3}{2}}$
b. $\left(\frac{2}{3}\right)^{-1}$
$-\frac{3}{2}$
$\left(\frac{9}{4}\right)^{\frac{1}{2}}$
$\frac{27^{\frac{1}{3}}}{6}$
3. Rewrite in radical form. If the number is rational, write it without using radicals.
a. $6^{\frac{3}{2}}$
b. $\left(\frac{1}{2}\right)^{\frac{1}{4}}$
c. $3(8)^{\frac{1}{3}}$
d. $\left(\frac{64}{125}\right)^{-\frac{2}{3}}$
e. $81^{-\frac{1}{4}}$
4. Rewrite the following expressions in exponent form.
a. $\sqrt{5}$
b. $\sqrt[3]{5^{2}}$
c. $\sqrt{5^{3}}$
d. $(\sqrt[3]{5})^{2}$
5. Use the graph of $f(x)=2^{x}$ shown to the right to estimate the following powers of 2 .
a. $2^{\frac{1}{4}}$
b. $2^{\frac{2}{3}}$
c. $2^{\frac{3}{4}}$
d. $2^{0.2}$
e. $2^{1.2}$
f. $2^{-\frac{1}{5}}$

6. Rewrite each expression in the form $k x^{n}$, where $k$ is a real number, $x$ is a positive real number, and $n$ is rational.
a. $\sqrt[4]{16 x^{3}}$
b. $\frac{5}{\sqrt{x}}$
c. $\sqrt[3]{1 / x^{4}}$
d. $\frac{4}{\sqrt[3]{8 x^{3}}}$
e. $\frac{27}{\sqrt{9 x^{4}}}$
f. $\left(\frac{125}{x^{2}}\right)^{-\frac{1}{3}}$
7. Find a value of $x$ for which $2 x^{\frac{1}{2}}=32$.
8. Find a value of $x$ for which $x^{\frac{4}{3}}=81$.
9. If $x^{\frac{3}{2}}=64$, find the value of $4 x^{-\frac{3}{4}}$.
10. If $=\frac{1}{9}$, evaluate the following expressions.
a. $b^{-\frac{1}{2}}$
b. $b^{\frac{5}{2}}$
c. $\sqrt[3]{3 b^{-1}}$
11. Show that each expression is equivalent to $2 x$. Assume $x$ is a positive real number.
a. $\sqrt[4]{16 x^{4}}$
b. $\frac{\left(\sqrt[3]{8 x^{3}}\right)^{2}}{\sqrt{4 x^{2}}}$
c. $\frac{6 x^{3}}{\sqrt[3]{27 x^{6}}}$
12. Yoshiko said that $16^{\frac{1}{4}}=4$ because 4 is one-fourth of 16 . Use properties of exponents to explain why she is or is not correct.
13. Jefferson said that $8^{\frac{4}{3}}=16$ because $8^{\frac{1}{3}}=2$ and $2^{4}=16$. Use properties of exponents to explain why he is or is not correct.
14. Rita said that $8^{\frac{2}{3}}=128$ because $8^{\frac{2}{3}}=8^{2} \cdot 8^{\frac{1}{3}}$, so $8^{\frac{2}{3}}=64 \cdot 2$, and then $8^{\frac{2}{3}}=128$. Use properties of exponents to explain why she is or is not correct.
15. Suppose for some positive real number $a$ that $\left(a^{\frac{1}{4}} \cdot a^{\frac{1}{2}} \cdot a^{\frac{1}{4}}\right)^{2}=3$.
a. What is the value of $a$ ?
b. Which exponent properties did you use to find your answer to part (a)?
16. In the lesson, you made the following argument:

$$
\begin{aligned}
\left(2^{\frac{1}{3}}\right)^{3} & =2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \\
& =2^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}} \\
& =2^{1} \\
& =2 .
\end{aligned}
$$

Since $\sqrt[3]{2}$ is a number so that $(\sqrt[3]{2})^{3}=2$ and $2^{\frac{1}{3}}$ is a number so that $\left(2^{\frac{1}{3}}\right)^{3}=2$, you concluded that $2^{\frac{1}{3}}=\sqrt[3]{2}$. Which exponent property was used to make this argument?

