

Lesson 3: Rational Exponents—What Are $2^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$?

Classwork

Opening Exercise

- a. What is the value of $2^{\frac{1}{2}}$? Justify your answer.
- b. Graph $f(x) = 2^x$ for each integer x from x = -2 to x = 5. Connect the points on your graph with a smooth curve.

Rational Exponents—What are 2^1_2 and 2^1_3 ? 10/29/14

ALGEBRA II

The graph at right shows a close-up view of $f(x) = 2^x$ for -0.5 < x < 1.5.

- c. Find two consecutive integers that are over and under estimates of the value of $2^{\frac{1}{2}}$.
- d. Does it appear that $2^{\frac{1}{2}}$ is halfway between the integers you specified in Exercise 1?

- e. Use the graph of $f(x) = 2^x$ to estimate the value of $2^{\frac{1}{2}}$.
- f. Use the graph of $f(x) = 2^x$ to estimate the value of $2^{\frac{1}{3}}$.

Example 1

- a. What is the 4^{th} root of 16?
- b. What is the cube root of 125?
- c. What is the 5^{th} root of 100,000?

Exercise 1

Evaluate each expression.

- a. ∜<u>81</u>
- b. ⁵√32
- c. $\sqrt[3]{9} \cdot \sqrt[3]{3}$
- d. $\sqrt[4]{25} \cdot \sqrt[4]{100} \cdot \sqrt[4]{4}$

Discussion

If $2^{\frac{1}{2}} = \sqrt{2}$ and $2^{\frac{1}{3}} = \sqrt[3]{2}$, what does $2^{\frac{3}{4}}$ equal? Explain your reasoning.

Exercises 2–8

Rewrite each exponential expression as an n^{th} root.

2. $3^{\frac{1}{2}}$

3. $11^{\frac{1}{5}}$

Rational Exponents—What are 2^1_2 and 2^1_3 ? 10/29/14

ALGEBRA II

4.
$$\left(\frac{1}{4}\right)^{\frac{1}{5}}$$

5. $6^{\frac{1}{10}}$

Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without radicals or exponents.

6. $2^{\frac{3}{2}}$

7. $4^{\frac{5}{2}}$

8. $\left(\frac{1}{8}\right)^{\frac{5}{3}}$

9. Show why the following statement is true:

$$2^{-\frac{1}{2}} = \frac{1}{2^{\frac{1}{2}}}$$

Rational Exponents—What are 2^1_2 and 2^1_3 ? 10/29/14

Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without radicals or exponents.

10. $4^{-\frac{3}{2}}$

11. $27^{-\frac{2}{3}}$

12. $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$

Lesson Summary

 n^{TH} ROOT OF A NUMBER: Let a and b be numbers, and let $n \ge 2$ be a positive integer. If $b = a^n$, then a is an n^{th} root of b. If n = 2, then the root is a called a square root. If n = 3, then the root is called a *cube root*.

PRINCIPAL n^{TH} **ROOT OF A NUMBER:** Let *b* be a real number that has at least one real n^{th} root. The *principal* n^{th} root of *b* is the real n^{th} root that has the same sign as *b* and is denoted by a radical symbol: $\sqrt[n]{b}$.

Every positive number has a unique principal n^{th} root. We often refer to the principal n^{th} root of b as just the n^{th} root of b. The n^{th} root of 0 is 0.

For any positive integers m and n, and any real number b for which the principal n^{th} root of b exists, we have

$$b^{\frac{1}{n}} = \sqrt[n]{b}$$
$$b^{\frac{m}{n}} = \sqrt[n]{b^{m}} = \left(\sqrt[n]{b}\right)^{m}$$
$$b^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{b^{m}}}.$$

Problem Set

1. Select the expression from (A), (B), and (C) that correctly completes the statement.

		(A)	(B)	(C)
a.	$x^{\frac{1}{3}}$ is equivalent to	$\frac{1}{3}x$	$\sqrt[3]{x}$	$\frac{3}{x}$
b.	$x^{\frac{2}{3}}$ is equivalent to	$\frac{2}{3}x$	$\sqrt[3]{\chi^2}$	$\left(\sqrt{x}\right)^3$
с.	$x^{-\frac{1}{4}}$ is equivalent to	$-\frac{1}{4}x$	$\frac{4}{x}$	$\frac{1}{\sqrt[4]{x}}$
d.	$\left(\frac{4}{x}\right)^{\frac{1}{2}}$ is equivalent to	$\frac{2}{x}$	$\frac{4}{x^2}$	$\frac{2}{\sqrt{x}}$

2. Identify which of the expressions (A), (B), and (C) are equivalent to the given expression.

(A) (B) (C)
a.
$$16^{\frac{1}{2}}$$
 $\left(\frac{1}{16}\right)^{-\frac{1}{2}}$ $8^{\frac{2}{3}}$ $64^{\frac{3}{2}}$

b.
$$\left(\frac{2}{3}\right)^{-1}$$
 $-\frac{3}{2}$ $\left(\frac{9}{4}\right)^{\frac{1}{2}}$ $\frac{27^{\frac{3}{2}}}{6}$

Rational Exponents—What are 2_2^1 and 2_3^1 ? 10/29/14

3. Rewrite in radical form. If the number is rational, write it without using radicals.

a.
$$6^{\frac{3}{2}}$$

b. $(\frac{1}{2})^{\frac{1}{4}}$
c. $3(8)^{\frac{1}{3}}$

d.
$$\left(\frac{64}{125}\right)^{-\frac{2}{3}}$$

- e. $81^{-\frac{1}{4}}$
- 4. Rewrite the following expressions in exponent form.
 - a. $\sqrt{5}$
 - b. $\sqrt[3]{5^2}$
 - c. $\sqrt{5^3}$
 - d. $(\sqrt[3]{5})^2$
- 5. Use the graph of $f(x) = 2^x$ shown to the right to estimate the following powers of 2.
 - a. $2^{\frac{1}{4}}$
 - b. $2^{\frac{2}{3}}$
 - c. $2^{\frac{3}{4}}$
 - d. 2^{0.2}
 - e. 2^{1.2}
 - f. $2^{-\frac{1}{5}}$

Rational Exponents—What are 2^1_2 and 2^1_3 ? 10/29/14

engage^{ny}

- 6. Rewrite each expression in the form kx^n , where k is a real number, x is a positive real number, and n is rational.
 - a. $\sqrt[4]{16x^3}$ b. $\frac{5}{\sqrt{x}}$
 - c. $\sqrt[3]{1/x^4}$ d. $\frac{4}{\sqrt[3]{8x^3}}$ e. $\frac{27}{\sqrt{9x^4}}$
 - f. $\left(\frac{125}{x^2}\right)^{-\frac{1}{3}}$
- 7. Find a value of x for which $2x^{\frac{1}{2}} = 32$.
- 8. Find a value of x for which $x^{\frac{4}{3}} = 81$.
- 9. If $x^{\frac{3}{2}} = 64$, find the value of $4x^{-\frac{3}{4}}$.
- 10. If $=\frac{1}{9}$, evaluate the following expressions.
 - a. $b^{-\frac{1}{2}}$
 - b. $b^{\frac{5}{2}}$
 - c. $\sqrt[3]{3b^{-1}}$
- 11. Show that each expression is equivalent to 2x. Assume x is a positive real number.
 - a. $\sqrt[4]{16x^4}$ b. $\frac{(\sqrt[3]{8x^3})^2}{\sqrt{4x^2}}$ c. $\frac{6x^3}{\sqrt[3]{27x^6}}$
- 12. Yoshiko said that $16^{\frac{1}{4}} = 4$ because 4 is one-fourth of 16. Use properties of exponents to explain why she is or is not correct.
- 13. Jefferson said that $8^{\frac{4}{3}} = 16$ because $8^{\frac{1}{3}} = 2$ and $2^4 = 16$. Use properties of exponents to explain why he is or is not correct.
- 14. Rita said that $8^{\frac{2}{3}} = 128$ because $8^{\frac{2}{3}} = 8^2 \cdot 8^{\frac{1}{3}}$, so $8^{\frac{2}{3}} = 64 \cdot 2$, and then $8^{\frac{2}{3}} = 128$. Use properties of exponents to explain why she is or is not correct.

Rational Exponents—What are 2_2^1 and 2_3^1 ? 10/29/14

- 15. Suppose for some positive real number a that $\left(a^{\frac{1}{4}} \cdot a^{\frac{1}{2}} \cdot a^{\frac{1}{4}}\right)^2 = 3$.
 - a. What is the value of *a*?
 - b. Which exponent properties did you use to find your answer to part (a)?
- 16. In the lesson, you made the following argument:

$$(2^{\frac{1}{3}})^{3} = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \\ = 2^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} \\ = 2^{1} \\ = 2.$$

Since $\sqrt[3]{2}$ is a number so that $(\sqrt[3]{2})^3 = 2$ and $2^{\frac{1}{3}}$ is a number so that $(2^{\frac{1}{3}})^3 = 2$, you concluded that $2^{\frac{1}{3}} = \sqrt[3]{2}$. Which exponent property was used to make this argument?

