Lesson 10: Building Logarithmic Tables

Classwork

Opening Exercise

Find the value of the following expressions without using a calculator.

WhatPower $_{10}(1000)$
$\log _{10}(1000)$

WhatPower $_{10}$ (100)
$\log _{10}(100)$

WhatPower $_{10}$ (10)
$\log _{10}(10)$

WhatPower $_{10}$ (1)
$\log _{10}(1)$

WhatPower $_{10}\left(\frac{1}{10}\right)$
$\log _{10}\left(\frac{1}{10}\right)$

WhatPower $_{10}\left(\frac{1}{100}\right)$
$\log _{10}\left(\frac{1}{100}\right)$

Formulate a rule based on your results above: If k is an integer, then $\log _{10}\left(10^{k}\right)=$ \qquad ـ.

Example 1

Exercises

1. Find two consecutive powers of 10 so that 30 is between them. That is, find an integer exponent k so that $10^{k}<30<10^{k+1}$.
2. From your result in Exercise 1, $\log (30)$ is between which two integers?
3. Find a number k to one decimal place so that $10^{k}<30<10^{k+0.1}$, and use that to find under and over estimates for $\log (30)$.
4. Find a number k to two decimal places so that $10^{k}<30<10^{k+0.01}$, and use that to find under and over estimates for $\log (30)$.
5. Repeat this process to approximate the value of $\log (30)$ to 4 decimal places.
6. Verify your result on your calculator, using the LOG button.
7. Use your calculator to complete the following table. Round the logarithms to 4 decimal places.

x	$\log (x)$
1	
2	
3	
4	
5	
6	
7	
8	
9	

x	$\log (x)$
10	
20	
30	
40	
50	
60	
70	
80	
90	

x	$\log (x)$
100	
200	
300	
400	
500	
600	
700	
800	
900	

8. What pattern(s) can you see in the table from Exercise 7 as x is multiplied by 10 ? Write the pattern(s) using logarithmic notation.
9. What pattern would you expect to find for $\log (1000 x)$? Make a conjecture and test it to see whether or not it appears to be valid.
10. Use your results from Exercises 8 and 9 to make a conjecture about the value of $\log \left(10^{k} \cdot x\right)$ for any positive integer k.
11. Use your calculator to complete the following table. Round the logarithms to 4 decimal places.

x	$\log (x)$
1	
2	
3	
4	
5	
6	
7	
8	
9	

x	$\log (x)$
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

x	$\log (x)$
0.01	
0.02	
0.03	
0.04	
0.05	
0.06	
0.07	
0.08	
0.09	

12. What pattern(s) can you see in the table from Exercise 11 ? Write them using logarithmic notation.
13. What pattern would you expect to find for $\log \left(\frac{x}{1000}\right)$? Make a conjecture and test it to see whether or not it appears to be valid.
14. Combine your results from Exercises 10 and 12 to make a conjecture about the value of the logarithm for a multiple of a power of 10 ; that is, find a formula for $\log \left(10^{k} \cdot x\right)$ for any integer k.

Lesson Summary

- The notation $\log (x)$ is used to represent $\log _{10}(x)$.
- For integers $k, \log \left(10^{k}\right)=k$.
- For integers m and $n, \log \left(10^{m} \cdot 10^{n}\right)=\log \left(10^{m}\right)+\log \left(10^{n}\right)$.
- For integers k and positive real numbers $x, \log \left(10^{k} \cdot x\right)=k+\log (x)$.

Problem Set

1. Complete the following table of logarithms without using a calculator; then, answer the questions that follow.

x	$\log (x)$
$1,000,000$	
100,000	
10,000	
1000	
100	
10	

x	$\log (x)$
0.1	
0.01	
0.001	
0.0001	
0.00001	
0.000001	

a. What is $\log (1)$? How does that follow from the definition of a base- 10 logarithm?
b. What is $\log \left(10^{k}\right)$ for an integer k ? How does that follow from the definition of a base- 10 logarithm?
c. What happens to the value of $\log (x)$ as x gets really large?
d. For $x>0$, what happens to the value of $\log (x)$ as x gets really close to zero?
2. Use the table of logarithms below to estimate the values of the logarithms in parts (a)-(h).

x	$\log (x)$
2	0.3010
3	0.4771
5	0.6990
7	0.8451
11	1.0414
13	1.1139

a. $\quad \log (70,000)$
b. $\quad \log (0.0011)$
c. $\quad \log (20)$
d. $\log (0.00005)$
e. $\log (130,000)$
f. $\quad \log (3000)$
g. $\log (0.07)$
h. $\log (11,000,000)$
3. If $\log (n)=0.6$, find the value of $\log (10 n)$.
4. If m is a positive integer and $\log (m) \approx 3.8$, how many digits are there in m ? Explain how you know.
5. If m is a positive integer and $\log (m) \approx 9.6$, how many digits are there in m ? Explain how you know.
6. Vivian says $\log (452,000)=5+\log (4.52)$, while her sister Lillian says that $\log (452,000)=6+\log (0.452)$. Which sister is correct? Explain how you know.
7. Write the logarithm base 10 of each number in the form $k+\log (x)$, where k is the exponent from the scientific notation, and x is a positive real number.
a. $\quad 2.4902 \times 10^{4}$
b. $\quad 2.58 \times 10^{13}$
c. $\quad 9.109 \times 10^{-31}$
8. For each of the following statements, write the number in scientific notation and then write the logarithm base 10 of that number in the form $k+\log (x)$, where k is the exponent from the scientific notation, and x is a positive real number.
a. The speed of sound is $1116 \mathrm{ft} / \mathrm{s}$.
b. The distance from Earth to the Sun is 93 million miles.
c. The speed of light is $29,980,000,000 \mathrm{~cm} / \mathrm{s}$.
d. The weight of the earth is $5,972,000,000,000,000,000,000,000 \mathrm{~kg}$.
e. The diameter of the nucleus of a hydrogen atom is 0.00000000000000175 m .
f. For each part (a)-(e), you have written each logarithm in the form $k+\log (x)$, for integers k and positive real numbers x. Use a calculator to find the values of the expressions $\log (x)$. Why are all of these values between 0 and 1?

