

Lesson 10: Building Logarithmic Tables

Classwork

Opening Exercise

Find the value of the following expressions without using a calculator.

WhatPower ₁₀ (1000)	log ₁₀ (1000)
WhatPower ₁₀ (100)	log ₁₀ (100)
WhatPower ₁₀ (10)	log ₁₀ (10)
WhatPower ₁₀ (1)	log ₁₀ (1)
WhatPower ₁₀ $\left(\frac{1}{10}\right)$	$\log_{10}\left(\frac{1}{10}\right)$
WhatPower ₁₀ $\left(\frac{1}{100}\right)$	$\log_{10}\left(\frac{1}{100}\right)$

Formulate a rule based on your results above: If k is an integer, then $\log_{10}(10^k) =$ _____.

 $\ensuremath{\mathbb{C}}$ 2014 Common Core, Inc. Some rights reserved. commoncore.org

Building Logarithmic Tables 10/29/14

engage^{ny}

Example 1

Exercises

- 1. Find two consecutive powers of 10 so that 30 is between them. That is, find an integer exponent k so that $10^k < 30 < 10^{k+1}$.
- 2. From your result in Exercise 1, log(30) is between which two integers?
- 3. Find a number k to one decimal place so that $10^k < 30 < 10^{k+0.1}$, and use that to find under and over estimates for log(30).
- 4. Find a number k to two decimal places so that $10^k < 30 < 10^{k+0.01}$, and use that to find under and over estimates for log (30).

CC BY-NC-SA

Date:

5. Repeat this process to approximate the value of log(30) to 4 decimal places.

6. Verify your result on your calculator, using the LOG button.

7. Use your calculator to complete the following table. Round the logarithms to 4 decimal places.

x	$\log(x)$	
1		
2		
3		
4		
5		
6		
7		
8		
9		

x	$\log(x)$
10	
20	
30	
40	
50	
60	
70	
80	
90	

x	$\log(x)$
100	
200	
300	
400	
500	
600	
700	
800	
900	

8. What pattern(s) can you see in the table from Exercise 7 as x is multiplied by 10? Write the pattern(s) using logarithmic notation.

Building Logarithmic Tables 10/29/14

9. What pattern would you expect to find for log(1000x)? Make a conjecture and test it to see whether or not it appears to be valid.

10. Use your results from Exercises 8 and 9 to make a conjecture about the value of $log(10^k \cdot x)$ for any positive integer k.

11. Use your calculator to complete the following table. Round the logarithms to 4 decimal places.

x	$\log(x)$	x	$\log(x)$	x	$\log(x)$
1		0.1		0.01	
2		0.2		0.02	
3		0.3		0.03	
4		0.4		0.04	
5		0.5		0.05	
6		0.6		0.06	
7		0.7		0.07	
8		0.8		0.08	
9		0.9		0.09	

12. What pattern(s) can you see in the table from Exercise 11? Write them using logarithmic notation.

Building Logarithmic Tables 10/29/14

S.63

13. What pattern would you expect to find for $\log \left(\frac{x}{1000}\right)$? Make a conjecture and test it to see whether or not it appears to be valid.

14. Combine your results from Exercises 10 and 12 to make a conjecture about the value of the logarithm for a multiple of a power of 10; that is, find a formula for $\log(10^k \cdot x)$ for any integer k.

Lesson Summary

- The notation $\log(x)$ is used to represent $\log_{10}(x)$.
- For integers k, $\log(10^k) = k$.
- For integers *m* and *n*, $\log(10^m \cdot 10^n) = \log(10^m) + \log(10^n)$.
- For integers k and positive real numbers x, $\log(10^k \cdot x) = k + \log(x)$.

Problem Set

Complete the following table of logarithms without using a calculator; then, answer the questions that follow. 1.

x	$\log(x)$
1,000,000	
100,000	
10,000	
1000	
100	
10	

x	$\log(x)$
0.1	
0.01	
0.001	
0.0001	
0.00001	
0.000001	

- What is log(1)? How does that follow from the definition of a base-10 logarithm? a.
- b. What is $log(10^k)$ for an integer k? How does that follow from the definition of a base-10 logarithm?
- What happens to the value of log(x) as x gets really large? с.
- For x > 0, what happens to the value of log(x) as x gets really close to zero? d.
- 2. Use the table of logarithms below to estimate the values of the logarithms in parts (a)–(h).

x	$\log(x)$
2	0.3010
3	0.4771
5	0.6990
7	0.8451
11	1.0414
13	1.1139

- log(70,000) a.
- b. log(0.0011)
- log(20)c.
- log(0.00005)d.
- log(130,000)e.
- f. log(3000)
- log(0.07)g.
- h. log(11,000,000)

Date:

- 3. If log(n) = 0.6, find the value of log(10n).
- 4. If *m* is a positive integer and $log(m) \approx 3.8$, how many digits are there in *m*? Explain how you know.
- 5. If *m* is a positive integer and $log(m) \approx 9.6$, how many digits are there in *m*? Explain how you know.
- 6. Vivian says log(452,000) = 5 + log(4.52), while her sister Lillian says that log(452,000) = 6 + log(0.452). Which sister is correct? Explain how you know.
- 7. Write the logarithm base 10 of each number in the form $k + \log(x)$, where k is the exponent from the scientific notation, and x is a positive real number.
 - a. 2.4902×10^4
 - b. 2.58×10^{13}
 - c. 9.109×10^{-31}
- 8. For each of the following statements, write the number in scientific notation and then write the logarithm base 10 of that number in the form $k + \log(x)$, where k is the exponent from the scientific notation, and x is a positive real number.
 - a. The speed of sound is 1116 ft/s.
 - b. The distance from Earth to the Sun is 93 million miles.
 - c. The speed of light is 29,980,000,000 cm/s .
 - d. The weight of the earth is 5,972,000,000,000,000,000,000 kg.
 - e. The diameter of the nucleus of a hydrogen atom is 0.0000000000000175 m.
 - f. For each part (a)–(e), you have written each logarithm in the form $k + \log(x)$, for integers k and positive real numbers x. Use a calculator to find the values of the expressions $\log(x)$. Why are all of these values between 0 and 1?

Building Logarithmic Tables 10/29/14

