

Lesson 11: The Most Important Property of Logarithms

Classwork

Opening Exercise

Use the logarithm table below to calculate the specified logarithms.

x	$\log(x)$
1	0
2	0.3010
3	0.4771
4	0.6021
5	0.6990
6	0.7782
7	0.8451
8	0.9031
9	0.9542

a. log(80)

- b. log(7000)
- c. log(0.00006)
- d. $\log(3.0 \times 10^{27})$
- e. $\log(9.0 \times 10^k)$ for an integer k

The Most Important Property of Logarithms 10/29/14

Exercises 1–5

1. Use your calculator to complete the following table. Round the logarithms to four decimal places.

x	$\log(x)$
1	0
2	0.3010
3	0.4771
4	0.6021
5	0.6990
6	0.7782
7	0.8451
8	0.9031
9	0.9542

x	$\log(x)$
10	
12	
16	
18	
20	
25	
30	
36	
100	

- 2. Calculate the following values. Do they appear anywhere else in the table?
 - a. $\log(2) + \log(4)$

b. $\log(2) + \log(6)$

- c. $\log(3) + \log(4)$
- d. $\log(6) + \log(6)$
- e. $\log(2) + \log(18)$
- f. $\log(3) + \log(12)$

3. What pattern(s) can you see in Exercise 2 and the table from Exercise 1? Write them using logarithmic notation.

4. What pattern would you expect to find for $log(x^2)$? Make a conjecture, and test it to see whether or not it appears to be valid.

5. Make a conjecture for a logarithm of the form log(xyz), where x, y, and z are positive real numbers. Provide evidence that your conjecture is valid.

Example 1

Use the logarithm table from Exercise 1 to approximate the following logarithms:

- a. log(14)
- b. log(35)

The Most Important Property of Logarithms 10/29/14

c. log(72)

d. log(121)

Exercises 6–8

6. Use your calculator to complete the following table. Round the logarithms to four decimal places.

x	$\log(x)$	x	$\log(x)$
2		0.5	
4		0.25	
5		0.2	
8		0.125	
10		0.1	
16		0.0625	
20		0.05	
50		0.02	
100		0.01	

7. What pattern(s) can you see in the table from Exercise 6? Write a conjecture using logarithmic notation.

8. Use the definition of logarithm to justify the conjecture you found in Exercise 7.

The Most Important Property of Logarithms 10/29/14

Example 2

Use the logarithm tables and the rules we discovered to estimate the following logarithms to four decimal places.

- a. log(2100)
- b. log(0.00049)

c. log(42,000,000)

d. $\log\left(\frac{1}{640}\right)$

The Most Important Property of Logarithms 10/29/14

- The notation log(x) is used to represent $log_{10}(x)$.
- The most important property of logarithms base 10 is that for positive real numbers x and y,

 $\log(xy) = \log(x) + \log(y).$

For positive real numbers *x*,

$$\log\left(\frac{1}{x}\right) = -\log(x).$$

Problem Set

- 1. Use the table of logarithms at right to estimate the value of the logarithms in parts (a)–(h).
 - log(25) a.
 - b. log(27)
 - c. log(33)
 - d. log(55)
 - e. log(63)
 - log(75)f.
 - g. log(81)
 - h. log(99)

2. Use the table of logarithms at right to estimate the value of the logarithms in parts (a)–(f).

- log(350)a.
- log(0.0014)b.
- log(0.077) c.
- d. log(49,000)
- log(1.69)e.
- f. log(6.5)

x	$\log(x)$
2	0.30
3	0.48
5	0.70
7	0.85
11	1.04
13	1.11

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

NYS	COMMON	CORE	MATHEMATICS	CURRICULUM
-----	--------	------	-------------	------------

- 3. Use the table of logarithms at right to estimate the value of the logarithms in parts (a)–(f).
 - a. $\log\left(\frac{1}{30}\right)$
 - b. $\log\left(\frac{1}{25}\right)$
 - c. $\log\left(\frac{1}{40}\right)$
 - d. $\log\left(\frac{1}{42}\right)$
 - e. $\log\left(\frac{1}{50}\right)$
 - f. $\log\left(\frac{1}{64}\right)$
- 4. Reduce each expression to a single logarithm of the form log(x).
 - a. $\log(5) + \log(7)$
 - b. $\log(3) + \log(9)$
 - c. $\log(15) \log(5)$
 - d. $\log(8) + \log\left(\frac{1}{4}\right)$
- 5. Use properties of logarithms to write the following expressions involving logarithms of only prime numbers.
 - a. log(2500)
 - b. log(0.00063)
 - c. log(1250)
 - d. log(26,000,000)
- 6. Use properties of logarithms to show that $\log(26) = \log(2) \log(\frac{1}{13})$.
- 7. Use properties of logarithms to show that log(3) + log(4) + log(5) log(6) = 1.
- 8. Use properties of logarithms to show that $-\log(3) = \log(\frac{1}{2} \frac{1}{3}) + \log(2)$.
- 9. Use properties of logarithms to show that $\log\left(\frac{1}{3} \frac{1}{4}\right) + \left(\log\left(\frac{1}{3}\right) \log\left(\frac{1}{4}\right)\right) = -2\log(3).$

