Lesson 12: Properties of Logarithms

Classwork

Opening Exercise

Use the approximation $\log (2) \approx 0.3010$ to approximate the values of each of the following logarithmic expressions.
a. $\quad \log (20)$
b. $\quad \log (0.2)$
c. $\quad \log \left(2^{4}\right)$

Exercises 1-10

For Exercises 1-6, explain why each statement below is a property of base-10 logarithms.

1. Property 1: $\log (1)=0$.
2. Property 2: $\log (10)=1$.
3. Property 3: For all real numbers $r, \log \left(10^{r}\right)=r$.
4. Property 4: For any $x>0,10^{\log (x)}=x$.
5. Property 5: For any positive real numbers x and $y, \log (x \cdot y)=\log (x)+\log (y)$. Hint: Use an exponent rule as well as Property 4.
6. Property 6: For any positive real number x and any real number $r, \log \left(x^{r}\right)=r \cdot \log (x)$. Hint: Again, use an exponent rule as well as Property 4.
7. Apply properties of logarithms to rewrite the following expressions as a single logarithm or number.
a. $\quad \frac{1}{2} \log (25)+\log (4)$
b. $\quad \frac{1}{3} \log (8)+\log (16)$
c. $\quad 3 \log (5)+\log (0.8)$
8. Apply properties of logarithms to rewrite each expression as a sum of terms involving numbers, $\log (x)$, and $\log (y)$.
a. $\quad \log \left(3 x^{2} y^{5}\right)$
b. $\quad \log \left(\sqrt{x^{7} y^{3}}\right)$
9. In mathematical terminology, logarithms are well defined because if $X=Y$, then $\log (X)=\log (Y)$ for $X, Y>0$. This means that if you want to solve an equation involving exponents, you can apply a logarithm to both sides of the equation, just as you can take the square root of both sides when solving a quadratic equation. You do need to be careful not to take the logarithm of a negative number or zero.
Use the property stated above to solve the following equations.
a. $\quad 10^{10 x}=100$
b. $\quad 10^{x-1}=\frac{1}{10^{x+1}}$
c. $100^{2 x}=10^{3 x-1}$
10. Solve the following equations.
a. $\quad 10^{x}=2^{7}$
b. $\quad 10^{x^{2}+1}=15$
c. $4^{x}=5^{3}$

Lesson Summary

We have established the following properties for base-10 logarithms, where x and y are positive real numbers and r is any real number:

1. $\log (1)=0$
2. $\log (10)=1$
3. $\log \left(10^{r}\right)=r$
4. $10^{\log (x)}=x$
5. $\log (x \cdot y)=\log (x)+\log (y)$
6. $\log \left(x^{r}\right)=r \cdot \log (x)$

Additional properties not yet established are the following:
7. $\log \left(\frac{1}{x}\right)=-\log (x)$
8. $\log \left(\frac{x}{y}\right)=\log (x)-\log (y)$

Also, logarithms are well defined, meaning that for $X, Y>0$, if $X=Y$, then $\log (X)=\log (Y)$.

Problem Set

1. Use the approximate logarithm values below to estimate each of the following logarithms. Indicate which properties you used.

$$
\begin{array}{ll}
\log (2)=0.3010 & \log (3)=0.4771 \\
\log (5)=0.6990 & \log (7)=0.8451
\end{array}
$$

a. $\quad \log (6)$
b. $\quad \log (15)$
c. $\quad \log (12)$
d. $\log \left(10^{7}\right)$
e. $\log \left(\frac{1}{5}\right)$
f. $\quad \log \left(\frac{3}{7}\right)$
g. $\quad \log (\sqrt[4]{2})$
2. Let $\log (X)=r, \log (Y)=s$, and $\log (Z)=t$. Express each of the following in terms of r, s, and t.
a. $\log \left(\frac{X}{Y}\right)$
b. $\log (Y Z)$
c. $\quad \log \left(X^{r}\right)$
d. $\quad \log (\sqrt[3]{Z})$
e. $\log \left(\sqrt[4]{\frac{Y}{Z}}\right)$
f. $\quad \log \left(X Y^{2} Z^{3}\right)$
3. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
a. $\quad \log \left(\frac{13}{5}\right)+\log \left(\frac{5}{4}\right)$
b. $\log \left(\frac{5}{6}\right)-\log \left(\frac{2}{3}\right)$
c. $\frac{1}{2} \log (16)+\log (3)+\log \left(\frac{1}{4}\right)$
4. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
a. $\log (\sqrt{x})+\frac{1}{2} \log \left(\frac{1}{x}\right)+2 \log (x)$
b. $\log (\sqrt[5]{x})+\log \left(\sqrt[5]{x^{4}}\right)$
c. $\quad \log (x)+2 \log (y)-\frac{1}{2} \log (z)$
d. $\frac{1}{3}(\log (x)-3 \log (y)+\log (z))$
e. $2(\log (x)-\log (3 y))+3(\log (z)-2 \log (x))$
5. Use properties of logarithms to rewrite the following expressions in an equivalent form containing only $\log (x)$, $\log (y), \log (z)$, and numbers.
a. $\quad \log \left(\frac{3 x^{2} y^{4}}{\sqrt{z}}\right)$
b. $\quad \log \left(\frac{42 \sqrt[3]{x y^{7}}}{x^{2} z}\right)$
c. $\log \left(\frac{100 x^{2}}{y^{3}}\right)$
d. $\quad \log \left(\sqrt{\frac{x^{3} y^{2}}{10 z}}\right)$
e. $\quad \log \left(\frac{1}{10 x^{2} z}\right)$
6. Express $\log \left(\frac{1}{x}-\frac{1}{x+1}\right)+\left(\log \left(\frac{1}{x}\right)-\log \left(\frac{1}{x+1}\right)\right)$ as a single logarithm for positive numbers x.
7. Show that $\log \left(x+\sqrt{x^{2}-1}\right)+\log \left(x-\sqrt{x^{2}-1}\right)=0$ for $x \geq 1$.
8. If $x y=10^{3.67}$, find the value of $\log (x)+\log (y)$.
9. Solve the following exponential equations by taking the logarithm base 10 of both sides. Leave your answers stated in terms of logarithmic expressions.
a. $\quad 10^{x^{2}}=320$
b. $10^{\frac{x}{8}}=300$
c. $\quad 10^{3 x}=400$
d. $\quad 5^{2 x}=200$
e. $3^{x}=7^{-3 x+2}$
10. Solve the following exponential equations.
a. $\quad 10^{x}=3$
b. $\quad 10^{y}=30$
c. $\quad 10^{z}=300$
d. Use the properties of logarithms to justify why x, y, and z form an arithmetic sequence whose constant difference is 1 .
11. Without using a calculator, explain why the solution to each equation must be a real number between 1 and 2 .
a. $\quad 11^{x}=12$
b. $\quad 21^{x}=30$
c. $100^{x}=2000$
d. $\left(\frac{1}{11}\right)^{x}=0.01$
e. $\left(\frac{2}{3}\right)^{x}=\frac{1}{2}$
f. $\quad 99^{x}=9000$
12. Express the exact solution to each equation as a base-10 logarithm. Use a calculator to approximate the solution to the nearest $1000{ }^{\text {th }}$.
a. $\quad 11^{x}=12$
b. $\quad 21^{x}=30$
c. $\quad 100^{x}=2000$
d. $\left(\frac{1}{11}\right)^{x}=0.01$
e. $\left(\frac{2}{3}\right)^{x}=\frac{1}{2}$
f. $\quad 99^{x}=9000$
13. Show that the value of x that satisfies the equation $10^{x}=3 \cdot 10^{n}$ is $\log (3)+n$.
14. Solve each equation. If there is no solution, explain why.
a. $3 \cdot 5^{x}=21$
b. $\quad 10^{x-3}=25$
c. $\quad 10^{x}+10^{x+1}=11$
d. $8-2^{x}=10$
15. Solve the following equation for n : $A=P(1+r)^{n}$.
16. In this exercise, we will establish a formula for the logarithm of a sum. Let $L=\log (x+y)$, where $x, y>0$.
a. Show $\log (x)+\log \left(1+\frac{y}{x}\right)=L$. State as a property of logarithms after showing this is a true statement.
b. Use part (a) and the fact that $\log (100)=2$ to rewrite $\log (365)$ as a sum.
c. Rewrite 365 in scientific notation, and use properties of logarithms to express $\log (365)$ as a sum of an integer and a logarithm of a number between 0 and 10.
d. What do you notice about your answers to (b) and (c)?
e. Find two integers that are upper and lower estimates of $\log (365)$.

