

5-team

Lesson 17: Graphing the Logarithm Function

10-team

Classwork

Opening Exercise

Graph the points in the table for your assigned function $f(x) = \log(x)$, $g(x) = \log_2(x)$, or $h(x) = \log_5(x)$ for $0 < x \le 16$. Then, sketch a smooth curve through those points and answer the questions that follow.

2-team

	$f(x) = \frac{x}{0.0625}$ 0.125 0.25 0.5 1 2 4 8	$ \begin{array}{r} \log(x) \\ f(x) \\ -1.20 \\ -0.90 \\ -0.60 \\ -0.30 \\ 0 \\ 0.30 \\ 0.60 \\ 0.90 \\ 4.26 \\ \end{array} $		$g(x) = \frac{x}{0.0625}$ 0.125 0.25 0.5 1 2 4 8	$log_2(x)$ g(x) -4 -3 -2 -1 0 1 2 3 i		$h(x) = \frac{x}{0.0625}$ 0.125 0.25 0.5 1 2 4 8	$ \begin{array}{r} \log_5(x) \\ h(x) \\ -1.72 \\ -1.29 \\ -0.86 \\ -0.43 \\ 0 \\ 0.43 \\ 0.86 \\ 1.29 \\ 1.29 \\ \end{array} $		
	16	1.20		16	4		16	1.72		
0 1	2 3	4	5 6	7	8 9	10	11 1:	2 13	14]	16

- a. What does the graph indicate about the domain of your function?
- b. Describe the *x*-intercepts of the graph.
- c. Describe the *y*-intercepts of the graph.
- d. Find the coordinates of the point on the graph with *y*-value 1.
- e. Describe the behavior of the function as $x \to 0$.
- f. Describe the end behavior of the function as $x \to \infty$.
- g. Describe the range of your function.
- h. Does this function have any relative maxima or minima? Explain how you know.

Graphing the Logarithm Function 10/29/14

engage^{ny}

Exercises

1. Graph the points in the table for your assigned function $r(x) = \log_{\frac{1}{10}}(x)$, $s(x) = \log_{\frac{1}{2}}(x)$, or $t(x) = \log_{\frac{1}{5}}(x)$ for $0 < x \le 16$. Then sketch a smooth curve through those points, and answer the questions that follow.

10-team					
$r(x) = \log_{\frac{1}{10}}(x)$					
x	r(x)				
0.0625	1.20				
0.125	0.90				
0.25	0.60				
0.5	0.30				
1	0				
2	-0.30				
4	-0.60				
8	-0.90				
16	-1.20				

2-team							
$s(x) = \log_{\frac{1}{2}}(x)$							
x	s(x)						
0.0625	4						
0.125	3						
0.25	2						
0.5	1						
1	0						
2	-1						
4	-2						
8	-3						
16	-4						

e-team						
$t(x) = \log_{\frac{1}{5}}(x)$						
x	t(x)					
0.0625	1.72					
0.125	1.29					
0.25	0.86					
0.5	0.43					
1	0					
2	-0.43					
4	-0.86					
8	-1.29					
16	-1.72					

- a. What is the relationship between your graph in the Opening Exercise and your graph from this exercise?
- Why does this happen? Use the change of base formula to justify what you have observed in part (a). b.

engage^{ny}

Date:

NYS	COMMON	CORE M/	ATHEMATICS	CURRICULUM
-----	--------	---------	------------	------------

10-team

5-team

2. In general, what is the relationship between the graph of a function y = f(x) and the graph of y = f(kx) for a constant k?

3. Graph the points in the table for your assigned function $u(x) = \log(10x)$, $v(x) = \log_2(2x)$, or $w(x) = \log_5(5x)$. for $0 < x \le 16$. Then sketch a smooth curve through those points, and answer the questions that follow.

2-team

			u(x) =	$\log(10x)$		v(x) =	$\log_2(2)$	(x)	W(x) =	$\log_5(5x)$			
			x	u(x)		x	v(x))	x	w(x)			
			0.0625	-0.20		0.0625	-3		0.0625	-0.72			
			0.125	0.10		0.125	-2		0.125	-0.29	1		
			0.25	0.40		0.25	-1		0.25	0.14	1		
			0.5	0.70		0.5	0		0.5	0.57	1		
			1	1		1	1		1	1	1		
			2	1.30		2	2		2	1.43	1		
			4	1.60		4	3		4	1.86	1		
			8	1.90		8	4		8	2.29	1		
			16	2.20		16	5		16	2.72	1		
					-		-				-		
	Î										8		1
- 5.					1	I I				1	 		1
- 4) 		I I I
- 4					1					1	1 0 1		1
- 3-											; ; ;;		
											8		0
- 2-													
-											8		0 0
- 1-) 		
											3		0 0
0											i 		i 1
	0 1	2	3	4 5	6	7 8	9	10	11 12	13 :	14 1	15 1	16
1-											 - 		
							8				1 0		8
2-							ļ_) 		
	i i	i	i i	i i	i i	i i	- i -	i i	i i	i	0	1	0

--3

a. Describe a transformation that takes the graph of your team's function in this exercise to the graph of your team's function in the Opening Exercise.

b. Do your answers to Exercise 2 and part (a) agree? If not, use properties of logarithms to justify your observations in part (a).

Lesson Summary

The function $f(x) = \log_b(x)$ is defined for irrational and rational numbers. Its domain is all positive real numbers. Its range is all real numbers.

The function $f(x) = \log_b(x)$ goes to negative infinity as x goes to zero. It goes to positive infinity as x goes to positive infinity.

The larger the base *b*, the more slowly the function $f(x) = \log_b(x)$ increases.

By the change of base formula, $log_{\frac{1}{2}}(x) = -log_b(x)$.

Problem Set

- 1. The function $Q(x) = \log_b(x)$ has function values in the table at right.
 - a. Use the values in the table to sketch the graph of y = Q(x).
 - b. What is the value of b in $Q(x) = \log_b(x)$? Explain how you know.
 - c. Identify the key features in the graph of y = Q(x).

- 2. Consider the logarithmic functions $f(x) = \log_b(x)$, $g(x) = \log_5(x)$, where *b* is a positive real number, and $b \neq 1$. The graph of *f* is given at right.
 - a. Is b > 5, or is b < 5? Explain how you know.
 - b. Compare the domain and range of functions f and g.
 - c. Compare the x-intercepts and y-intercepts of f and g.
 - d. Compare the end behavior of f and g.

Graphing the Logarithm Function 10/29/14

- 3. Consider the logarithmic functions $f(x) = \log_b(x)$, $g(x) = \log_{\frac{1}{2}}(x)$, where *b* is a positive real number and $b \neq 1$. A table of approximate values of *f* is given below.
 - a. Is $b > \frac{1}{2}$, or is $b < \frac{1}{2}$? Explain how you know.
 - b. Compare the domain and range of functions *f* and *g*.
 - c. Compare the x-intercepts and y-intercepts of f and g.
 - d. Compare the end behavior of f and g.

x	f(x)
$\frac{1}{4}$	0.86
$\frac{1}{2}$	0.43
1	0
2	-0.43
4	-0.86

Lesson 17

- 4. On the same set of axes, sketch the functions $f(x) = \log_2(x)$ and $g(x) = \log_2(x^3)$.
 - a. Describe a transformation that takes the graph of f to the graph of g.
 - b. Use properties of logarithms to justify your observations in part (a).
- 5. On the same set of axes, sketch the functions $f(x) = \log_2(x)$ and $g(x) = \log_2(\frac{x}{4})$.
 - a. Describe a transformation that takes the graph of f to the graph of g.
 - b. Use properties of logarithms to justify your observations in part (a).
- 6. On the same set of axes, sketch the functions $f(x) = \log_{\frac{1}{2}}(x)$ and $g(x) = \log_{2}(\frac{1}{x})$.
 - a. Describe a transformation that takes the graph of f to the graph of g.
 - b. Use properties of logarithms to justify your observations in part (a).
- 7. The figure below shows graphs of the functions $f(x) = \log_3(x)$, $g(x) = \log_5(x)$, and $h(x) = \log_{11}(x)$.

engac

- 8. The figure below shows graphs of the functions $f(x) = \log_{\frac{1}{2}}(x)$, $g(x) = \log_{\frac{1}{2}}(x)$, and $h(x) = \log_{\frac{1}{2}}(x)$.
 - Identify which graph corresponds to which function. Explain how you know.
 - b. Sketch the graph of $k(x) = \log_{\frac{1}{7}}(x)$ on the same axes.

- 9. For each function *f*, find a formula for the function *h* in terms of *x*. Part (a) has been done for you.
 - a. If $f(x) = x^2 + x$, find h(x) = f(x + 1).
 - b. If $f(x) = \sqrt{x^2 + \frac{1}{4}}$, find $h(x) = f(\frac{1}{2}x)$.
 - c. If $f(x) = \log(x)$, find $h(x) = f(\sqrt[3]{10x})$ when x > 0.
 - d. If $f(x) = 3^x$, find $h(x) = f(\log_3(x^2 + 3))$.
 - e. If $f(x) = x^3$, find $h(x) = f\left(\frac{1}{x^3}\right)$ when $x \neq 0$.
 - f. If $f(x) = x^3$, find $h(x) = f(\sqrt[3]{x})$.
 - g. If $f(x) = \sin(x)$, find $h(x) = f(x + \frac{\pi}{2})$.
 - h. If $f(x) = x^2 + 2x + 2$, find $h(x) = f(\cos(x))$.

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

engage

YS COMMON CORE MATHEMATICS CURRICULUM	Lesson 17	

ALGEBRA II

10. For each of the functions f and g below, write an expression for (i) f(g(x)), (ii) g(f(x)), and (iii) f(f(x)) in terms of x. Part (a) has been done for you.

a.
$$f(x) = x^2, g(x) = x + 1$$

i. $f(g(x)) = f(x + 1)$
 $= (x + 1)^2$
ii. $g(f(x)) = g(x^2)$

$$= x^{2} + 1$$
iii. $f(f(x)) = f(x^{2})$
 $= (x^{2})^{2}$
 $= x^{4}$

b.
$$f(x) = \frac{1}{4}x - 8, g(x) = 4x + 1$$

c.
$$f(x) = \sqrt[3]{x+1}, g(x) = x^3 - 1$$

d.
$$f(x) = x^3, g(x) = \frac{1}{x}$$

e. $f(x) = |x|, g(x) = x^2$

Extension:

Ν

- 11. Consider the functions $f(x) = \log_2(x)$ and $(x) = \sqrt{x-1}$.
 - a. Use a calculator or other graphing utility to produce graphs of $f(x) = \log_2(x)$ and $g(x) = \sqrt{x-1}$ for $x \le 17$.
 - b. Compare the graph of the function $f(x) = \log_2(x)$ with the graph of the function $g(x) = \sqrt{x-1}$. Describe the similarities and differences between the graphs.
 - c. Is it always the case that $\log_2(x) > \sqrt{x-1}$ for x > 2?
- 12. Consider the functions $f(x) = \log_2(x)$ and $(x) = \sqrt[3]{x-1}$.
 - a. Use a calculator or other graphing utility to produce graphs of $f(x) = \log_2(x)$ and $h(x) = \sqrt[3]{x-1}$ for $x \le 28$.
 - b. Compare the graph of the function $f(x) = \log_2(x)$ with the graph of the function $h(x) = \sqrt[3]{x-1}$. Describe the similarities and differences between the graphs.
 - c. Is it always the case that $\log_2(x) > \sqrt[3]{x-1}$ for x > 2?

engage