Lesson 21: The Graph of the Natural Logarithm Function

Classwork

Exploratory Challenge

Your task is to compare graphs of base b logarithm functions to the graph of the common logarithm function $f(x)=\log (x)$ and summarize your results with your group. Recall that the base of the common logarithm function is 10. A graph of f is provided below.
a. Select at least one base value from this list: $\frac{1}{10}, \frac{1}{2}, 2,5,20,100$. Write a function in the form $g(x)=\log _{b}(x)$ for your selected base value, b.
b. Graph the functions f and g in the same viewing window using a graphing calculator or other graphing application, and then add a sketch of the graph of g to the graph of f shown below.

c. Describe how the graph of g for the base you selected compares to the graph of $f(x)=\log (x)$.
d. Share your results with your group and record observations on the graphic organizer below. Prepare a group presentation that summarizes the group's findings.

How does the graph of $g(x)=\log _{\boldsymbol{b}}(x)$ compare to the graph of $f(x)=\log (x)$ for various values of \boldsymbol{b} ?	
$0<b<1$	
$1<b<10$	

Exercise 1

Use the change of base property to rewrite each function as a common logarithm.
Base $b \quad$ Base 10 (Common Logarithm)

$$
\begin{aligned}
& g(x)=\log _{\frac{1}{4}}(x) \\
& g(x)=\log _{\frac{1}{2}}(x)
\end{aligned}
$$

$g(x)=\log _{2}(x)$
$g(x)=\log _{5}(x)$
$g(x)=\log _{20}(x)$
$g(x)=\log _{100}(x)$

Example 1: The Graph of the Natural Logarithm Function $f(x)=\ln (x)$
Graph the natural logarithm function below to demonstrate where it sits in relation to the base 2 and base 10 logarithm functions.

Example 2

Graph each function by applying transformations of the graphs of the natural logarithm function.
a. $\quad f(x)=3 \ln (x-1)$

b. $\quad g(x)=\log _{6}(x)-2$

Problem Set

1. Rewrite each logarithm function as a natural logarithm function.
a. $f(x)=\log _{5}(x)$
b. $\quad f(x)=\log _{2}(x-3)$
c. $f(x)=\log _{2}\left(\frac{x}{3}\right)$
d. $f(x)=3-\log (x)$
e. $f(x)=2 \log (x+3)$
f. $f(x)=\log _{5}(25 x)$
2. Describe each function as a transformation of the natural logarithm function $f(x)=\ln (x)$.
a. $g(x)=3 \ln (x+2)$
b. $\quad g(x)=-\ln (1-x)$
c. $\quad g(x)=2+\ln \left(e^{2} x\right)$
d. $g(x)=\log _{5}(25 x)$
3. Sketch the graphs of each function in Problem 2 and identify the key features including intercepts, decreasing or increasing intervals, and the vertical asymptote.
4. Solve the equation $e^{-x}=\ln (x)$ graphically.
5. Use a graphical approach to explain why the equation $\log (x)=\ln (x)$ has only one solution.
6. Juliet tried to solve this equation as shown below using the change of base property and concluded there is no solution because $\ln (10) \neq 1$. Construct an argument to support or refute her reasoning.

$$
\begin{aligned}
\log (x) & =\ln (x) \\
\frac{\ln (x)}{\ln (10)} & =\ln (x) \\
\left(\frac{\ln (x)}{\ln (10)}\right) \frac{1}{\ln (x)} & =(\ln (x)) \frac{1}{\ln (x)} \\
\frac{1}{\ln (10)} & =1
\end{aligned}
$$

7. Consider the function f given by $f(x)=\log _{x}(100)$ for $x>0$ and $x \neq 1$.
a. What are the values of $f(100), f(10)$, and $f(\sqrt{10})$?
b. Why is the value 1 excluded from the domain of this function?
c. Find a value x so that $f(x)=0.5$.
d. Find a value w so that $f(w)=-1$.
e. Sketch a graph of $y=\log _{x}(100)$ for $x>0$ and $x \neq 1$.
