Lesson 7: Solve for Unknown Angles—Transversals

Classwork

Opening Exercise

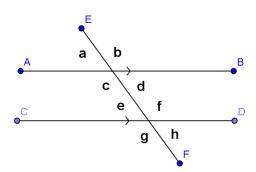
Use the diagram at the right to determine x and y. \overrightarrow{AB} and \overrightarrow{CD} are straight lines.

 $x = \underline{\hspace{1cm}}$

y = _____

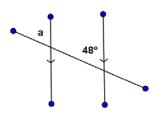
Name a pair of vertical angles:

Find the measure of $\angle BOF$. Justify your calculation.

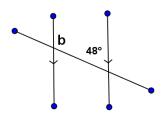

x + 8
2x - 8

4x - 24

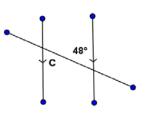
Discussion


Given line AB and line CD in a plane (see the diagram below), a third line EF is called a transversal if it intersects \overrightarrow{AB} at a single point and intersects \overrightarrow{CD} at a single but different point. Line AB and line CD are parallel if and only if the following types of angle pairs are congruent or supplementary.

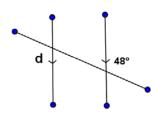
- Corresponding angles are equal in measure
- Alternate interior angles are equal in measure
- Same side interior angles are supplementary


Examples

1.


m∠a = _____

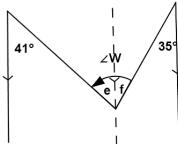
2.


m∠*b* = _____

3.

m∠*c* =_____

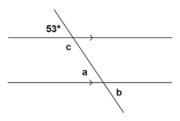
4.



m∠d = _____

5. An ______ is sometimes useful when solving for unknown angles.

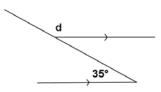
In this figure, we can use the auxiliary line to find the measures of $\angle e$ and $\angle f$ (how?), then add the two measures together to find the measure of $\angle W$.


What is the measure of $\angle W$?

Exercises

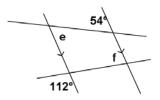
In each exercise below, find the unknown (labeled) angles. Give reasons for your solutions.

1.



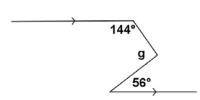
m∠a = _____

m∠*b* = _____

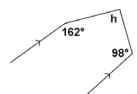

m∠*c* = _____

2.

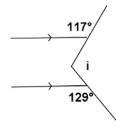
m∠d = _____


3.

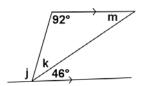
m∠e = _____


 $m \angle f =$

4.


m∠g = _____

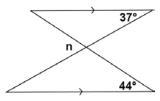
5.


m∠*h* = ____

6.

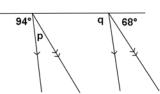
m∠*i* = _____

7.



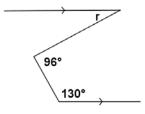
m∠*j* = _____

m∠k = _____


m∠*m*=

8.

m∠n = _____


9.

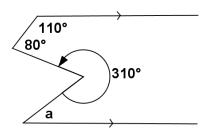
m∠p = _____

m∠q = _____

10.

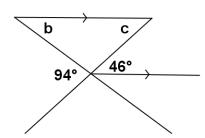
m∠r = _____

Relevant Vocabulary


Alternate Interior Angles: Let line t be a transversal to lines l and m such that t intersects l at point P and intersects m at point Q. Let R be a point on line l and S be a point on line m such that the points R and S lie in opposite half-planes of t. Then $\angle RPQ$ and $\angle PQS$ are called alternate interior angles of the transversal t with respect to line m and line l.

<u>Corresponding Angles</u>: Let line t be a transversal to lines l and m. If $\angle x$ and $\angle y$ are alternate interior angles, and $\angle y$ and $\angle z$ are vertical angles, then $\angle x$ and $\angle z$ are corresponding angles.

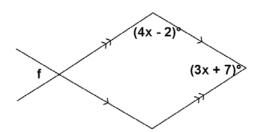
Problem Set


Find the unknown (labeled) angles. Give reasons for your solutions.

1.

m∠α = ____


2.


m∠*b* = _____

m∠c = _____

3.

4.

m∠*f* = _____

(cg) BY-NC-SA