Lesson 34: Review of the Assumptions

Classwork

Assumption/Fact/Property	Guiding Questions/Applications	Notes/Solutions
Given two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $A B=A^{\prime} B^{\prime}$ (Side), $\mathrm{m} \angle A=\mathrm{m} \angle A^{\prime}$ (Angle), $A C=$ $A^{\prime} C^{\prime}$ (Side), then the triangles are congruent. [SAS]	The figure below is a parallelogram $A B C D$. What parts of the parallelogram satisfy the SAS triangle congruence criteria for $\triangle A B D$ and $\triangle C D B$? Describe a rigid motion(s) that will map one onto the other. (Consider drawing an auxiliary line.)	
Given two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, if $\mathrm{m} \angle A=\mathrm{m} \angle A^{\prime}$ (Angle), $A B=A^{\prime} B^{\prime}$ (Side), and $\mathrm{m} \angle B=\mathrm{m} \angle B^{\prime}$ (Angle), then the triangles are congruent. [ASA]	In the figure below, $\triangle C D E$ is the image of the reflection of $\triangle A B E$ across line $F G$. Which parts of the triangle can be used to satisfy the ASA congruence criteria?	
Given two triangles $\triangle A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$, if $A B=A^{\prime} B^{\prime}$ (Side), $A C=A^{\prime} C^{\prime}$ (Side), and $B C=B^{\prime} C^{\prime}$ (Side), then the triangles are congruent. [SSS]	$\triangle A B C$ and $\triangle A D C$ are formed from the intersections and center points of circles A and C. Prove $\triangle A B C \cong \triangle$ $A D C$ by SSS.	

Problem Set

Use any of the assumptions, facts, and/or properties presented in the tables above to find x and/or y in each figure below. Justify your solutions.

1. Find the perimeter of parallelogram $A B C D$. Justify your solution.

2. $A C=34$
$A B=26$
$B D=28$
Given parallelogram $A B C D$, find the perimeter of $\triangle C E D$. Justify your solution.

3. $X Y=12$
$X Z=20$
$Z Y=24$
F, G, and H are midpoints of the sides on which they are located. Find the perimeter of $\triangle F G H$. Justify your solution.

4. $A B C D$ is a parallelogram with $A E=C F$.

Prove that $D E B F$ is a parallelogram.

5. C is the centroid of $\triangle R S T$.
$R C=16, C L=10, T J=21$
$S C=$ \qquad
$T C=$ \qquad
$K C=$ \qquad

