

Lesson 34: Review of the Assumptions

Classwork

Assumption/Fact/Property	Guiding Questions/Applications	Notes/Solutions
Given two triangles $\triangle ABC$ and $\triangle A'B'C'$ so that $AB = A'B'$ (Side), $m \angle A = m \angle A'$ (Angle), $AC =$ A'C'(Side), then the triangles are congruent. [SAS]	The figure below is a parallelogram <i>ABCD</i> . What parts of the parallelogram satisfy the SAS triangle congruence criteria for $\triangle ABD$ and $\triangle CDB$? Describe a rigid motion(s) that will map one onto the other. (Consider drawing an auxiliary line.)	
Given two triangles $\triangle ABC$ and $\triangle A'B'C'$, if $m \angle A = m \angle A'$ (Angle), $AB = A'B'$ (Side), and $m \angle B = m \angle B'$ (Angle), then the triangles are congruent. [ASA]	In the figure below, $\triangle CDE$ is the image of the reflection of $\triangle ABE$ across line <i>FG</i> . Which parts of the triangle can be used to satisfy the ASA congruence criteria?	
Given two triangles $\triangle ABC$ and $\triangle A'B'C'$, if $AB = A'B'$ (Side), AC = A'C' (Side), and $BC = B'C'(Side), then the triangles arecongruent.[SSS]$	$\triangle ABC$ and $\triangle ADC$ are formed from the intersections and center points of circles A and C. Prove $\triangle ABC \cong \triangle$ ADC by SSS.	

S.180

Given two triangles, $\triangle ABC$ and $\triangle A'B'C'$, if $AB = A'B'$ (Side), $m \angle B = m \angle B'$ (Angle), and $\angle C = \angle C'$ (Angle), then the triangles are congruent. [AAS]	The AAS congruence criterion is essentially the same as the ASA criterion for proving triangles congruent. Why is this true?	
Given two right triangles $\triangle ABC$ and $\triangle A'B'C'$ with right angles $\angle B$ and $\angle B'$, if $AB = A'B'$ (Leg) and AC = A'C' (Hypotenuse), then the triangles are congruent. [HL]	In the figure below, CD is the perpendicular bisector of AB and $\triangle ABC$ is isosceles. Name the two congruent triangles appropriately, and describe the necessary steps for proving them congruent using HL.	
The opposite sides of a parallelogram are congruent.	In the figure below, $BE \cong DE$ and $\angle CBE \cong \angle ADE$. Prove $ABCD$ is a	
The opposite angles of a parallelogram are congruent.	c	
The diagonals of a parallelogram bisect each other.	A	
The midsegment of a triangle is a line segment that connects the midpoints of two sides of a triangle; the midsegment is parallel to the third side of the triangle and is half the length of the third side.	\overline{DE} is the midsegment of $\triangle ABC$. Find the perimeter of $\triangle ABC$, given the labeled segment lengths. $B \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D}$	
The three medians of a triangle are concurrent at the centroid; the centroid divides each median into two parts, from vertex to centroid and centroid to midpoint in a ratio of 2: 1.	If \overline{AE} , \overline{BF} , and \overline{CD} are medians of $\triangle ABC$, find the lengths of segments BG, GE , and CG , given the labeled lengths. BG	

S.181

Date:

Problem Set

Use any of the assumptions, facts, and/or properties presented in the tables above to find x and/or y in each figure below. Justify your solutions.

Find the perimeter of parallelogram *ABCD*. Justify your solution. 1.

3. XY = 12

2. *AC* = 34

AB = 26

BD = 28

your solution.

XZ = 20

$$ZY = 24$$

F, G, and H are midpoints of the sides on which they are located. Find the perimeter of \triangle *FGH*. Justify your solution.

Given parallelogram *ABCD*, find the perimeter of \triangle *CED*. Justify

5. *C* is the centroid of $\triangle RST$. RC = 16, CL = 10, TJ = 21

4. *ABCD* is a parallelogram with AE = CF.

Prove that *DEBF* is a parallelogram.

SC = _____

$$TC =$$

$$KC =$$

ena

ac

Lesson 34: Review of the Assumptions 10/15/14

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Date: