Lesson 1: Scale Drawings

Classwork

Opening Exercise

Above is a picture of a bicycle. Which of the images below appears to be a well-scaled image of the original? Why?

Example 1

Use construction tools to create a scale drawing of $\triangle A B C$ with a scale factor of $r=2$.

Exercise 1

Use construction tools to create a scale drawing of $\triangle D E F$ with a scale factor of $r=3$. What properties does your scale drawing share with the original figure? Explain how you know.

Example 2

Use construction tools to create a scale drawing of $\triangle X Y Z$ with a scale factor of $r=\frac{1}{2}$.

Exercises 2-4

2. Use construction tools to create a scale drawing of $\triangle P Q R$ with a scale factor of $r=\frac{1}{4}$. What properties do the scale drawing and the original figure share? Explain how you know.

3. Triangle $E F G$ is provided below, and one angle of scale drawing $\Delta E^{\prime} F^{\prime} G^{\prime}$ is also provided. Use construction tools to complete the scale drawing so that the scale factor is $r=3$. What properties do the scale drawing and the original figure share? Explain how you know.

4. Triangle $A B C$ is provided below, and one side of scale drawing $\triangle A^{\prime} B^{\prime} C^{\prime}$ is also provided. Use construction tools to complete the scale drawing and determine the scale factor.

Lesson Summary

There are two properties of a scale drawing of a figure: corresponding angles are equal in measurement, and corresponding lengths are proportional in measurement.

Problem Set

1. Use construction tools to create a scale drawing of $\triangle A B C$ with a scale factor of $r=3$.

2. Use construction tools to create a scale drawing of $\triangle A B C$ with a scale factor of $r=\frac{1}{2}$.

3. Triangle $E F G$ is provided below, and one angle of scale drawing $\Delta E^{\prime} F^{\prime} G^{\prime}$ is also provided. Use construction tools to complete a scale drawing so that the scale factor is $r=2$.

4. Triangle $M T C$ is provided below, and one angle of scale drawing $\Delta M^{\prime} T^{\prime} C^{\prime}$ is also provided. Use construction tools to complete a scale drawing so that the scale factor is $\frac{1}{4}$.

5. Triangle $A B C$ is provided below, and one side of scale drawing $\triangle A^{\prime} B^{\prime} C^{\prime}$ is also provided. Use construction tools to complete the scale drawing and determine the scale factor.

6. Triangle $X Y Z$ is provided below, and one side of scale drawing $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ is also provided. Use construction tools to complete the scale drawing and determine the scale factor.

7. Quadrilateral GHIJ is a scale drawing of quadrilateral $A B C D$ with scale factor r. Describe each of the following statements as always true, sometimes true, or never true, and justify your answer.
a. $\quad A B=G H$
b. $m \angle A B C=m \angle G H I$
c. $\frac{A B}{G H}=\frac{B C}{H I}$
d. Perimeter $(G H I J)=r \cdot \operatorname{Perimeter}(A B C D)$
e. $\operatorname{Area}(G H I J)=r \cdot \operatorname{Area}(A B C D)$ where $r \neq 1$
f. $r<0$
