Lesson 5: Scale Factors

Classwork

Opening Exercise

Quick Write: Describe how a figure is transformed under a dilation with a scale factor $r=1, r>1$, and $0<r<1$.

Discussion

Dilation theorem: If a dilation with center O and scale factor r sends point P to P^{\prime} and Q to Q^{\prime}, then $\left|P^{\prime} Q^{\prime}\right|=r|P Q|$. Furthermore, if $r \neq 1$ and O, P, and Q are the vertices of a triangle, then $\overleftrightarrow{P Q} \| \overleftrightarrow{P^{\prime} Q^{\prime}}$.

Now consider the dilation theorem when O, P, and Q are the vertices of $\triangle O P Q$. Since P^{\prime} and Q^{\prime} come from dilation with scale factor r and center O, we have $\frac{O P^{\prime}}{O P}=\frac{O Q^{\prime}}{O Q}=r$.

There are two cases that arise, recall what you wrote in your Quick Write. We must consider the case when $r>1$ and when $0<r<1$. Let's begin with the latter.

Dilation Theorem Proof, Case 1

Statements	Reasons/Explanations	
1. A dilation with center O and scale factor r sends point P to P^{\prime} and Q to Q^{\prime}. 2. $\frac{O P I}{O P}=\frac{O Q I}{O Q}=r$	1. 2.	
3. $\overleftrightarrow{P Q} \\| \overleftrightarrow{P^{\prime} Q^{\prime}}$	3.	
4. A dilation with center P and scale factor $\frac{P P^{\prime}}{P O}$ sends point O to P^{\prime} and point Q to R. Draw $\overline{P^{\prime} R}$.	4.	

5. $\overline{P^{\prime} R} \| \overline{O Q^{\prime}}$
6. $R Q=P^{\prime} Q^{\prime}$
7. $\frac{R Q}{P Q}=\frac{P^{\prime} O}{P O}$
8. $\frac{R Q}{P Q}=r$
9. $R Q=r \cdot P Q$
10. $P^{\prime} Q^{\prime}=r \cdot P Q$
11.
12.
13.
14.
15.
16.
17.

Exercises 1-4

1. Prove Case 2: If O, P, and Q are the vertices of a triangle and $r>1$, show that (a) $\overleftrightarrow{P Q} \| \overleftrightarrow{P^{\prime} Q^{\prime}}$ and (b) $P^{\prime} Q^{\prime}=r P Q$. Use the diagram below when writing your proof.

2.

a. Produce a scale drawing of $\triangle L M N$ using either the ratio or parallel method with point M as the center and a scale factor of $\frac{3}{2}$.

b. Use the dilation theorem to predict the length of $L^{\prime} N^{\prime}$, then measure its length directly using a ruler.
c. Does the dilation theorem appear to hold true?
3. Produce a scale drawing of $\triangle X Y Z$ with point X as the center and a scale factor of $\frac{1}{4}$. Use the dilation theorem to predict $Y^{\prime} Z^{\prime}$, and then measure its length directly using a ruler. Does the dilation theorem appear to hold true

4. Given the diagram below, determine if $\triangle D E F$ is a scale drawing of $\triangle D G H$. Explain why or why not.

Problem Set

1. $\triangle A B^{\prime} C^{\prime}$ is a dilation of $\triangle A B C$ from vertex A, and $C C^{\prime}=2$. Use the given information in each part and the diagram to find $B^{\prime} C^{\prime}$.
a. $\quad A B=9, A C=4$, and $B C=7$
b. $\quad A B=4, A C=9$, and $B C=7$
c. $\quad A B=7, A C=9$, and $B C=4$
d. $A B=7, A C=4$, and $B C=9$
e. $\quad A B=4, A C=7$, and $B C=9$
f. $A B=9, A C=7$, and $B C=4$

2. Given the diagram, $\angle C A B \cong \angle C F E$. Find $A B$.
3. Use the diagram to answer each part below.

a. $\quad \triangle O P^{\prime} Q^{\prime}$ is the dilated image of $\triangle O P Q$ from point O with a scale factor of $r>1$. Draw a possible $\overline{P Q}$.
b. $\quad \triangle O P^{\prime \prime} Q^{\prime \prime}$ is the dilated image of $\triangle O P Q$ from point O with a scale factor $k>r$. Draw a possible $\overline{P^{\prime \prime} Q^{\prime \prime}}$.
4. Given the diagram to the right, $\overline{R S} \| \overline{P Q}$, Area $(\Delta R S T)=15$ units 2, and Area $(\Delta O S R)=21$ units 2, find $R S$.

5. Using the information given in the diagram and $U X=9$, find Z on $\overline{X U}$ such that $\overline{Y Z}$ is an altitude. Then find $Y Z$ and $X Z$.

