

Lesson 5: Scale Factors

Classwork

Opening Exercise

Quick Write: Describe how a figure is transformed under a dilation with a scale factor r = 1, r > 1, and 0 < r < 1.

Discussion

DILATION THEOREM: If a dilation with center O and scale factor r sends point P to P' and Q to Q', then |P'Q'| = r|PQ|. Furthermore, if $r \neq 1$ and O, P, and Q are the vertices of a triangle, then $\overrightarrow{PQ}||\overrightarrow{P'Q'}$.

Now consider the dilation theorem when O, P, and Q are the vertices of $\triangle OPQ$. Since P' and Q' come from a dilation with scale factor r and center O, we have $\frac{OP'}{OP} = \frac{OQ'}{OQ} = r$.

There are two cases that arise, recall what you wrote in your Quick Write. We must consider the case when r > 1 and when 0 < r < 1. Let's begin with the latter.

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Lesson 5:

Dilation Theorem Proof, Case 1

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

engage^{ny}

NYS COMMON CORE MATHEMATICS CURRICULUM

GEOMETRY

Lesson 5:

Exercises 1–4

1. Prove Case 2: If O, P, and Q are the vertices of a triangle and r > 1, show that (a) $\overrightarrow{PQ} || \overrightarrow{P'Q'}$ and (b) P'Q' = rPQ. Use the diagram below when writing your proof.

2.

a. Produce a scale drawing of ΔLMN using either the ratio or parallel method with point M as the center and a scale factor of $\frac{3}{2}$.

engage^{ny}

Lesson 5:

- b. Use the dilation theorem to predict the length of L'N', then measure its length directly using a ruler.
- c. Does the dilation theorem appear to hold true?
- 3. Produce a scale drawing of ΔXYZ with point X as the center and a scale factor of $\frac{1}{4}$. Use the dilation theorem to predict Y'Z', and then measure its length directly using a ruler. Does the dilation theorem appear to hold true

4. Given the diagram below, determine if ΔDEF is a scale drawing of ΔDGH . Explain why or why not.

Scale Factors 9/26/14

ny

engage

Lesson 5:

С

Problem Set

- 1. $\Delta AB'C'$ is a dilation of ΔABC from vertex A, and CC' = 2. Use the given information in each part and the diagram to find B'C'.
 - a. AB = 9, AC = 4, and BC = 7
 - b. AB = 4, AC = 9, and BC = 7
 - c. AB = 7, AC = 9, and BC = 4
 - d. AB = 7, AC = 4, and BC = 9
 - e. AB = 4, AC = 7, and BC = 9
 - f. AB = 9, AC = 7, and BC = 4

5

2. Given the diagram, $\angle CAB \cong \angle CFE$. Find AB.

- a. $\Delta OP'Q'$ is the dilated image of ΔOPQ from point O with a scale factor of r > 1. Draw a possible \overline{PQ} .
- b. $\Delta OP''Q''$ is the dilated image of ΔOPQ from point O with a scale factor k > r. Draw a possible $\overline{P''Q''}$.

Lesson 5:

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

engage

Given the diagram to the right, $\overline{RS} \parallel \overline{PQ}$, Area (ΔRST) = 15 units², and Area(ΔOSR) = 21 units², find RS. 4.

5. Using the information given in the diagram and UX = 9, find Z on \overline{XU} such that \overline{YZ} is an altitude. Then find YZ and XZ.

engage^{ny}