Lesson 11: Dilations from Different Centers

Classwork

Exploratory Challenge 1

Drawing 2 and Drawing 3 are both scale drawings of Drawing 1.

- Determine the scale factor and center for each scale drawing. Take measurements as needed.
- Is there a way to map Drawing 2 onto Drawing 3 or map Drawing 3 onto Drawing 2?
- Generalize the parameters of this example and its results.

Lesson 11 Date:

Dilations from Different Centers 10/28/14

Exercise 1

Triangle ABC has been dilated with scale factor $\frac{1}{2}$ from centers O_1 and O_2 . What can you say about line segments A_1A_2 , B_1B_2 , C_1C_2 ?

Exploratory Challenge 2

If Drawing 2 is a scale drawing of Drawing 1 with scale factor r_1 , and Drawing 3 is a scale drawing of Drawing 2 with scale factor r_2 , what is the relationship between Drawing 3 and Drawing 1?

a. Determine the scale factor and center for each scale drawing. Take measurements as needed.

(cc) BY-NC-SA

Lesson 11

- b. What is the scale factor going from Drawing 1 to Drawing 3? Take measurements as needed.
- c. Compare the centers of dilations of Drawing 1 (to Drawing 2) and of Drawing 2 (to Drawing 3). What do you notice about these centers relative to the center of the composition of dilations O_3 ?
- d. Generalize the parameters of this example and its results.

Exercise 2

Triangle ABC has been dilated with scale factor $\frac{2}{3}$ from center O_1 to get triangle A'B'C', and then triangle A'B'C' is dilated from center O_2 with scale factor $\frac{1}{2}$ to get triangle A''B''C''. Describe the dilation that maps triangle ABC to triangle A''B''C''. Find the center and scale factor for that dilation.

 $O_{^{1}_{\bullet}}$

 O_2^{\bullet}

GEOMETRY

Lesson Summary

In a series of dilations, the scale factor that maps the original figure onto the final image is the product of all the scale factors in the series of dilations.

Problem Set

- 1. In Lesson 7, the dilation theorem for line segments said that if two different length line segments in the plane were parallel to each other, then a dilation exists mapping one segment onto the other. Explain why the line segments must be different lengths for a dilation to exist.
- 2. Regular hexagon A'B'C'D'E'F' is the image of regular hexagon ABCDEF under a dilation from center O_1 , and regular hexagon A''B''C''D''E''F'' is the image of regular hexagon ABCDEF under a dilation from center O_2 . Points A', B', C', D', E', and F' are also the images of points A'', B'', C'', D'', E'', and F'', respectively, under a translation along vector $\overline{D''D'}$. Find a possible regular hexagon ABCDEF.

(cc) BY-NC-SA

GFOMFTRY

3. A dilation with center O_1 and scale factor $\frac{1}{2}$ maps figure F to figure F'. A dilation with center O_2 and scale factor $\frac{3}{2}$ maps figure F' to figure F''. Draw figures F' and F'', and then find the center O and scale factor r of the dilation that takes F to F''.

 $O_1 \bullet O_2$

- 4. If a figure T is dilated from center O_1 with a scale factor $r_1 = \frac{3}{4}$ to yield image T', and figure T' is then dilated from center O_2 with a scale factor $r_2 = \frac{4}{3}$ to yield figure T''. Explain why $T \cong T''$.
- 5. A dilation with center O_1 and scale factor $\frac{1}{2}$ maps figure H to figure H'. A dilation with center O_2 and scale factor 2 maps figure H' to figure H''. Draw figures H' and H''. Find a vector for a translation that maps H to H''.

 O_1

Lesson 11

6. Figure W is dilated from O_1 with a scale factor $r_1=2$ to yield W'. Figure W' is then dilated from center O_2 with a scale factor $r_2=\frac{1}{4}$ to yield W''.

O₁.

0,

- a. Construct the composition of dilations of figure W described above.
- b. If you were to dilate figure W'', what scale factor would be required to yield an image that is congruent to figure W?

(cc) BY-NC-SA

c. Locate the center of dilation that maps W'' to W using the scale factor that you identified in part (b).

Lesson 11 Date: Dilations from Different Centers 10/28/14

7. Figures F_1 and F_2 in the diagram below are dilations of F from centers O_1 and O_2 , respectively.

- a. Find F.
- b. If $F_1 \cong F_2$, what must be true of the scale factors r_1 and r_2 of each dilation?
- c. If $F_1 \cong F_2$, what must be true of the scale factors r_1 and r_2 of each dilation?
- 8. Use a coordinate plane to complete each part below using U(2,3), V(6,6), and W(6,-1).
 - a. Dilate \triangle *UVW* from the origin with a scale factor $r_1 = 2$. List the coordinate of image points U', V', and W'.
 - b. Dilate \triangle *UVW* from (0,6) with a scale factor of $r_2 = \frac{3}{4}$. List the coordinates of image points U'', V'', and W''.
 - c. Find the scale factor, r_3 , from $\triangle U'V'W'$ to $\triangle U''V''W''$.
 - d. Find the coordinates of the center of dilation that maps $\triangle U'V'W'$ to $\triangle U''V''W''$.