Lesson 7: How Do Dilations Map Segments?

Classwork

Opening Exercise

a. Is a dilated segment still a segment? If the segment is transformed under a dilation, explain how.
b. Dilate the segment $P Q$ by a scale factor of 2 from center O.

i. Is the dilated segment $P^{\prime} Q^{\prime}$ a segment?
ii. How, if at all, has the segment $P Q$ been transformed?

Example 1

Case 1. Consider the case where the scale factor of dilation is $r=1$. Will a dilation from center O map segment $P Q$ to a segment $P^{\prime} Q^{\prime}$? Explain.

Example 2

Case 2. Consider the case where a line $P Q$ contains the center of the dilation. Will a dilation from the center with scale factor $r \neq 1$ map the segment $P Q$ to a segment $P^{\prime} Q^{\prime}$? Explain.

Example 3

Case 3. Consider the case where $\overleftrightarrow{P Q}$ does not contain the center O of the dilation and the scale factor r of the dilation is not equal to 1 ; then we have the situation where the key points O, P, and Q form $\triangle O P Q$. The scale factor not being equal to 1 means that we must consider scale factors such that $0<r<1$ and $r>1$. However, the proofs for each are similar, so we will focus on the case when $0<r<1$.

When we dilate points P and Q from center O by scale factor $0<r<1$, as shown, what do we know about points P^{\prime} and Q^{\prime} ?

We will use the fact that the line segment $P^{\prime} Q^{\prime}$ splits the sides of $\triangle O P Q$ proportionally and that the lines containing $\overline{P Q}$ and $\overline{P^{\prime} Q^{\prime}}$ are parallel to prove that a dilation maps segments to segments. Because we already know what happens when points P and Q are dilated, consider another point R that is on the segment $\overline{P Q}$. After dilating R from center O by scale factor r to get the point R^{\prime}, does R^{\prime} lie on the segment $\overline{P^{\prime} Q^{\prime}}$?

Putting together the preliminary dilation theorem for segments with the dilation theorem, we get:
DILATION THEOREM FOR SEGMENTS: A dilation $D_{O, r}$ maps a line segment $P Q$ to a line segment $P^{\prime} Q^{\prime}$ sending the endpoints to the endpoints so that $P^{\prime} Q^{\prime}=r P Q$. Whenever the center O does not lie in line $P Q$ and $r \neq 1$, we conclude $\overleftrightarrow{P Q} \| \overleftrightarrow{P^{\prime} Q^{\prime}}$. Whenever the center O lies in $\overleftrightarrow{P Q}$ or if $r=1$, we conclude $\overleftrightarrow{P Q}=\overleftrightarrow{P^{\prime} Q^{\prime}}$.

As an aside, observe that dilation maps parallel line segments to parallel line segments. Further, a dilation maps a directed line segment to a directed line segment that points in the same direction.

Example 4

Now look at the converse of the dilation theorem for segments: If $\overline{P Q}$ and $\overline{R S}$ are line segments of different lengths in the plane, then there is a dilation that maps one to the other if and only if $\overleftrightarrow{P Q}=\overleftrightarrow{R S}$ or $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$.

Based on Examples 2 and 3, we already know that a dilation maps a segment $P Q$ to another line segment, say $\overline{R S}$, so that $\overleftrightarrow{P Q}=\overleftrightarrow{R S}$ (Example 2) or $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$ (Example 3). If $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$, then, because $\overline{P Q}$ and $\overline{R S}$ are different lengths in the plane, they are bases of a trapezoid, as shown.

Since $\overline{P Q}$ and $\overline{R S}$ are segments of different lengths, then the non-base sides of the trapezoid are not parallel, and the lines containing them will meet at a point O as shown.

Recall that we want to show that a dilation will map $\overline{P Q}$ to $\overline{R S}$. Explain how to show it.

The case when the segments $\overline{P Q}$ and $\overline{R S}$ are such that $\overleftrightarrow{P Q}=\overleftrightarrow{R S}$ is left as an exercise.

Exercises 1-2

In the following exercises, you will consider the case where the segment and its dilated image belong to the same line; that is, when $\overline{P Q}$ and $\overline{R S}$ are such that $\overleftrightarrow{P Q}=\overleftrightarrow{R S}$.

1. Consider points P, Q, R, and S on a line, where $P=R$, as shown below. Show there is a dilation that maps $\overline{P Q}$ to $\overline{R S}$. Where is the center of the dilation?

2. Consider points P, Q, R, and S on a line as shown below where $P Q \neq R S$. Show there is a dilation that maps $\overline{P Q}$ to $\overline{R S}$. Where is the center of the dilation?

Lesson Summary

- When a segment is dilated by a scale factor of $r=1$, then the segment and its image would be the same length.
- When the points P and Q are on a line containing the center, then the dilated points P^{\prime} and Q^{\prime} will also be collinear with the center producing an image of the segment that is a segment.
- When the points P and Q are not collinear with the center, and the segment is dilated by a scale factor of $r \neq 1$, then the point P^{\prime} lies on the ray $O P^{\prime}$ with $O P^{\prime}=r \cdot O P$ and $Q^{\prime} l i e s$ on ray $O Q$ with $Q^{\prime}=r \cdot O Q$.

Problem Set

1. Draw the dilation of parallelogram $A B C D$ from center O using the scale factor $r=2$, and then answer the questions that follow.

-

a. Is the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ also a parallelogram? Explain.
b. What do parallel lines seem to map to under a dilation?
2. Given parallelogram $A B C D$ with $A(-8,1), B(2,-4), C(-3,-6)$, and $D(-13,-1)$, perform a dilation of the plane centered at the origin using the following scale factors.
a. Scale factor $\frac{1}{2}$
b. Scale factor 2
c. Are the images of parallel line segments under a dilation also parallel? Use your graphs to support your answer.
3. In Lesson 7, Example 3, we proved that a line segment $\overline{P Q}$, where O, P, and Q are the vertices of a triangle, maps to a line segment $\overline{P^{\prime} Q^{\prime}}$ under a dilation with a scale factor $r<1$. Using a similar proof, prove that for O not on $\overleftrightarrow{P Q}$, a dilation with center O and scale factor $r>1$ maps a point R on $\overline{P Q}$ to a point R^{\prime} on line $\overleftrightarrow{P Q}$.
4. On the plane, $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$ and $A B \neq A^{\prime} B^{\prime}$. Describe a dilation mapping $\overline{A B}$ to $\overline{A^{\prime} B^{\prime}}$. (Hint: There are 2 cases to consider.)
5. Only one of Figures A, B, or C below contains a dilation that maps A to A^{\prime} and B to B^{\prime}. Explain for each figure why the dilation does or does not exist. For each figure, assume that $A B \neq A^{\prime} B^{\prime}$.

c.

Figure C

