Lesson 13: Properties of Similarity Transformations

Classwork

Example 1

Similarity transformation G consists of a rotation about the point P by 90°, followed by a dilation centered at P with scale factor $r=2$, and then a reflection across line ℓ. Find the image of the triangle.

Example 2

A similarity transformation G applied to trapezoid $A B C D$ consists of a translation by vector $\overrightarrow{X Y}$, followed by a reflection across line m, and then followed by a dilation centered at P with scale factor $r=2$. Recall that we can describe the same sequence using the following notation: $D_{P, 2}\left(r_{m}\left(T_{X Y}(A B C D)\right)\right.$. Find the image of $A B C D$.

Exercise 1

A similarity transformation for triangle $D E F$ is described by $r_{n}\left(D_{A, \frac{1}{2}}\left(R_{A, 90^{\circ}}(D E F)\right)\right)$. Locate and label the image of triangle $D E F$ under the similarity.

Lesson Summary

Properties of similarity transformations:

1. Distinct points are mapped to distinct points.
2. Each point P^{\prime} in the plane has a pre-image.
3. There is a scale factor r for G, so that for any pair of points P and Q with images $P^{\prime}=G(P)$ and $Q^{\prime}=G(Q)$, then $P^{\prime} Q^{\prime}=r P Q$.
4. A similarity transformation sends lines to lines, rays to rays, line segments to line segments, and parallel lines to parallel lines.
5. A similarity transformation sends angles to angles of equal measure.
6. A similarity transformation maps a circle of radius R to a circle of radius $r R$, where r is the scaling factor of the similarity transformation.

Problem Set

1. A similarity transformation consists of a reflection over line ℓ, followed by a dilation from O with a scale factor of $r=\frac{3}{4}$. Use construction tools to find $\Delta G^{\prime \prime} H^{\prime \prime} I^{\prime \prime}$.

2. A similarity transformation consists of a dilation from point O with a scale factor of $r=2 \frac{1}{2}$, followed by a rotation about O of -90°. Use construction tools to find kite $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$.

3. For the Figure Z, find the image of $r_{\ell}\left(R_{P, 90^{\circ}}\left(D_{P, \frac{1}{2}}(Z)\right)\right.$.

4. A similarity transformation consists of a translation along vector $\overrightarrow{U V}$, followed by a rotation of 60° about P, then a dilation from P with scale factor $r=\frac{1}{3}$. Use construction tools to find $\Delta X^{\prime \prime \prime} Y^{\prime \prime \prime} Z^{\prime \prime \prime}$.

5. Given the quarter-circular figure determined by points A, B, and C, a similarity transformation consists of a -65° rotation about point B, followed by a dilation from point O with a scale factor of $r=\frac{1}{2}$. Find the image of the figure determined by points $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

. 0

Describe a different similarity transformation that would map quarter-circle $A B C$ to quarter-circle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
6. A similarity transformation consists of a dilation from center O with a scale factor of $\frac{1}{2}$, followed by a rotation of 60° about point O. Complete the similarity transformation on Figure T to complete the drawing of Figure $T^{\prime \prime}$.

7. Given Figure R on the coordinate plane shown below, a similarity transformation consists of a dilation from $(0,6)$ with a scale factor of $\frac{1}{4}$, followed by a reflection over line $x=-1$, then by a vertical translation of 5 units down. Find the image of Figure R.

8. Given $\triangle A B C$, with vertices $A(2,-7), B(-2,-1)$, and $C(3,-4)$, locate and label the image of the triangle under the similarity transformation $D_{B^{\prime}, \frac{1}{2}}\left(R_{A, 120^{\circ}}\left(r_{x=2}(A B C)\right)\right)$.
9. In Problem 8, describe the relationship of $A^{\prime \prime \prime}$ to $\overline{A B^{\prime}}$, and explain your reasoning.
10. Given $O(-8,3)$ and quadrilateral $B C D E$, with $B(-5,1), C(-6,-1), D(-4,-1)$, and $E(-4,2)$, what are the coordinates of the vertices of the image of $B C D E$ under the similarity transformation $r_{x-a x i s}\left(D_{0,3}(B C D E)\right)$?
11. Given triangle $A B C$ as shown on the diagram of the coordinate plane:
a. Perform a translation so that vertex A maps to the origin.
b. Next, dilate the image $A^{\prime} B^{\prime} C^{\prime}$ from the origin using a scale factor of $\frac{1}{3}$.
c. Finally, translate the image $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ so that the vertex $A^{\prime \prime}$ maps to the original point A.
d. Using transformations, describe how the resulting image $A^{\prime \prime \prime} B^{\prime \prime} C^{\prime \prime}$ relates to the original figure $A B C$.

12.
a. In the coordinate plane, name the single transformation that is the result of the composition of the two dilations shown below:
$D_{(0,0), 2}$ followed by $D_{(0,4), \frac{1}{2}}$
(Hint: Try it!)
b. In the coordinate plane, name the single transformation that is the result of the composition of the two dilations shown below:
$D_{(0,0), 2}$ followed by $D_{(4,4), \frac{1}{2}}$
(Hint: Try it!)
c. Using the results from parts (a) and (b), describe what happens to the origin under both similarity transformations.

