Lesson 14: Similarity

Classwork
Example 1
We said that for a figure A in the plane, it must be true that $A \sim A$. Describe why this must be true.

Example 2

We said that for figures A and B in the plane so that $A \sim B$, then it must be true that $B \sim A$. Describe why this must be true.

Example 3

Based on the definition of similar, how would you show that any two circles are similar?

Example 4

Suppose $\triangle A B C \leftrightarrow \triangle D E F$ and under this correspondence, corresponding angles are equal and corresponding sides are proportional. Does this guarantee that $\triangle A B C$ and $\triangle D E F$ are similar?

Example 5

a. In the diagram below, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. Describe a similarity transformation that maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$.

b. Joel says the sequence must require a dilation and three rigid motions, but Sharon is sure there is a similarity composed of just a dilation and just two rigid motions. Who is right?

Lesson Summary

Similarity is reflexive because a figure is similar to itself.
Similarity is symmetric because once a similarity transformation is determined to take a figure to another, there are inverse transformations that will take the figure back to the original.

Problem Set

1. If you are given any two congruent triangles, describe a sequence of basic rigid motions that will take one to the other.
2. If you are given two similar triangles that are not congruent triangles, describe a sequence of dilations and basic rigid motions that will take one to the other.
3. Given two line segments, $\overline{A B}$ and $\overline{C D}$, of different lengths, answer the following questions.
a. It is always possible to find a similarity transformation that maps $\overline{A B}$ to $\overline{C D}$ sending A to C and B to D. Describe one such similarity transformation.
b. If you are given that $\overline{A B}$ and $\overline{C D}$ are not parallel, are not congruent, do not share any points, and do not lie in the same line, what is the least number of transformations needed in a sequence to map $\overline{A B}$ to $\overline{C D}$? Which transformations make this work?
c. If you performed a similarity transformation that instead takes A to D and B to C, either describe what mistake was made in the similarity transformation, or describe what additional transformation is needed to fix the error so that A maps to C and B maps to D.
4. We claim that similarity is transitive, i.e., that if A, B, and C are figures in the plane such that $A \sim B$ and $B \sim C$, then $A \sim C$. Describe why this must be true.
5. Given two line segments, $\overline{A B}$ and $\overline{C D}$, of different lengths, we have seen that it is always possible to find a similarity transformation that maps $\overline{A B}$ to $\overline{C D}$, sending A to C and B to D with one rotation and one dilation. Can you do this with one reflection and one dilation?
6. Given two triangles, $\triangle A B C \sim \triangle D E F$, is it always possible to rotate $\triangle A B C$ so that the sides of $\triangle A B C$ are parallel to the corresponding sides in $\triangle D E F$; i.e., $\overline{A B} \| \overline{D E}$, etc.?
