## Lesson 18: Similarity and the Angle Bisector Theorem

## Classwork

## Opening Exercise

a. What is an angle bisector?
b. Describe the angle relationships formed when parallel lines are cut by a transversal.
c. What are the properties of an isosceles triangle?

## Discussion

In the diagram below, the angle bisector of $\angle A$ in $\triangle A B C$ meets side $B C$ at point $D$. Does the angle bisector create any observable relationships with respect to the side lengths of the triangle?


## Exercises 1-4

1. The sides of a triangle are 8,12 , and 15 . An angle bisector meets the side of length 15 . Find the lengths $x$ and $y$. Explain how you arrived at your answers.

2. The sides of a triangle are 8,12 , and 15 . An angle bisector meets the side of length 12 . Find the lengths $x$ and $y$.

3. The sides of a triangle are 8,12 , and 15 . An angle bisector meets the side of length 8 . Find the lengths $x$ and $y$.

4. The angle bisector of an angle splits the opposite side of a triangle into lengths 5 and 6 . The perimeter of the triangle is 33 . Find the lengths of the other two sides.

## Problem Set

1. The sides of a triangle have lengths of 5,8 , and $6 \frac{1}{2}$. An angle bisector meets the side of length $6 \frac{1}{2}$. Find the lengths $x$ and $y$.
2. The sides of a triangle are $10 \frac{1}{2}, 16 \frac{1}{2}$, and 9. An angle bisector meets the side of length 9 . Find the lengths $x$ and $y$.
3. In the diagram of triangle $D E F$ below, $\overline{D G}$ is an angle bisector, $E=8, D F=6$, and $E F=8 \frac{1}{6}$. Find $F G$ and $E G$.

4. $\angle B A D \cong \angle D A C$, show that $B D: B A=C D: C A$.

5. The perimeter of triangle $L M N$ is $32 \mathrm{~cm} . \overline{N X}$ is the angle bisector of angle $N, L X=3 \mathrm{~cm}$, and $X M=5 \mathrm{~cm}$. Find $L N$ and $M N$.
6. Given $C D=3, D B=4, B F=4, F E=5, A B=6$, and $\angle C A D \cong \angle D A B \cong \angle B A F \cong \angle F A E$, find the perimeter of quadrilateral $A E B C$
7. If $\overline{A E}$ meets $\overline{B C}$ at $D$ such that $C D: B D=C A: B A$, show that $\angle C A D \cong \angle B A D$. Explain how this proof relates to the angle bisector theorem.

8. In the diagram below, $\overline{E D} \cong \overline{D B}, \overline{B E}$ bisects $\angle A B C, A D=4$, and $D C=8$. Prove that $\triangle A D B \sim \triangle C E B$.

