Lesson 32: Using Trigonometry to Find Side Lengths of an Acute

Triangle

Classwork

Opening Exercise

a. Find the lengths of d and e.

b. Find the lengths of x and y. How is this different from part (a)?

Example 1

A surveyor needs to determine the distance between two points A and B that lie on opposite banks of a river. A point C is chosen 160 meters from point A, on the same side of the river as A. The measures of angles $\angle B A C$ and $\angle A C B$ are 41° and 55°, respectively. Approximate the distance from A to B to the nearest meter.

Exercises 1-2

1. In $\triangle A B C, m \angle A=30, a=12$, and $b=10$. Find $\sin \angle B$. Include a diagram in your answer.

2. A car is moving towards a tunnel carved out of the base of a hill. As the accompanying diagram shows, the top of the hill, H, is sighted from two locations, A and B. The distance between A and B is 250 ft . What is the height, h, of the hill to the nearest foot?

Example 2

Our friend the surveyor from Example 1 is doing some further work. He has already found the distance between points A and B (from Example 1). Now he wants to locate a point D that is equidistant from both A and B and on the same side of the river as A. He has his assistant mark the point D so that the angles $\angle A B D$ and $\angle B A D$ both measure 75°. What is the distance between D and A to the nearest meter?

Exercise 3

3. Parallelogram $A B C D$ has sides of lengths 44 mm and 26 mm , and one of the angles has a measure of 100°. Approximate the length of diagonal $A C$ to the nearest mm .

Problem Set

1. Given $\triangle A B C, A B=14, \angle A=57.2^{\circ}$, and $\angle C=78.4^{\circ}$, calculate the measure of angle B to the nearest tenth of a degree, and use the Law of Sines to find the lengths of $A C$ and $B C$ to the nearest tenth.

Calculate the area of $\triangle A B C$ to the nearest square unit.

2. Given $\triangle D E F, \angle F=39^{\circ}$, and $E F=13$, calculate the measure of $\angle E$, and use the Law of Sines to find the lengths of $\overline{D F}$ and $\overline{D E}$ to the nearest hundredth.

3. Does the law of sines apply to a right triangle? Based on $\triangle A B C$, the following ratios were set up according to the law of sines.

Fill in the partially completed work below.

$$
\begin{aligned}
& \frac{\sin \angle A}{a}=\frac{\sin 90}{c} \\
& \frac{\sin \angle A}{a}=\frac{}{c} \\
& \sin \angle A=\frac{}{c}
\end{aligned}
$$

$$
\frac{\sin \angle B}{b}=\frac{\sin 90}{c}
$$

$$
\frac{\sin \angle B}{b}=\frac{}{c}
$$

$$
\sin \angle B=\frac{}{c}
$$

What conclusions can we draw?
4. Given quadrilateral $G H K J, \angle H=50^{\circ}, \angle H K G=80^{\circ}, \angle K G J=50^{\circ}, \angle J$ is a right angle and $G H=9$ in., use the law of sines to find the length of $G K$, and then find the lengths of $\overline{G J}$ and $\overline{J K}$ to the nearest tenth of an inch.

5. Given triangle $L M N, L M=10, L N=15$, and $\angle L=38^{\circ}$, use the law of cosines to find the length of $\overline{M N}$ to the nearest tenth.

6. Given triangle $A B C, A C=6, A B=8$, and $\angle A=78^{\circ}$. Draw a diagram of triangle $A B C$, and use the law of cosines to find the length of $\overline{B C}$.

Calculate the area of triangle $A B C$.

