

Lesson 1: What Is Area?

Classwork

Exploratory Challenge 1

What is area? a.

What is the area of the rectangle below whose side lengths measure 3 units by 5 units? b.

What is the area of the $\frac{3}{4} \times \frac{5}{3}$ rectangle below? c.

Lesson 1: What Is Area? 10/22/14

engage^{ny}

Exploratory Challenge 2

a. What is the area of the rectangle below whose side lengths measure $\sqrt{3}$ units by $\sqrt{2}$ units? Use the unit squares on the graph to guide your approximation. Explain how you determined your answer.

b. Is your answer precise?

Discussion

Use Figures 1, 2, and 3 to find upper and lower approximations of the given rectangle.

Lesson 1: What Is Area? 10/22/14

Lower Approximations		
Less than $\sqrt{2}$	Less than $\sqrt{3}$	Less than or equal to A
1	1	1 × 1 =
	1.7	× 1.7 =
1.41		1.41 × =
1.414	1.732	1.414 × 1.732 =
1.4142	1.7320	$1.4142 \times 1.7320 = 49344$
		=494824305
1.414213	1.732050	$1.414213 \times 1.732050 = 4948762665$

engage^{ny}

Upper Approximations			
Greater than $\sqrt{2}$	Greater than $\sqrt{3}$	Greater than or equal to A	
2	2	$2 \times 2 = 4$	
1.5	1.8	1.5 × 1.8 =	
1.42	1.74	$1.42 \times 1.74 = 2.4708$	
	1.733	× 1.733 =	
1.4143	1.7321	$1.4143 \times 1.7321 = 2.44970903$	
1.41422	1.73206	$1.41422 \times 1.73206 = 2.4495138932$	
		= 2.449490772914	

Discussion

If it takes one can of paint to cover a unit square in the coordinate plane, how many cans of paint are needed to paint the region within the curved figure?

engage^{ny}

Date:

Problem Set

Use the following picture to explain why $\frac{15}{12}$ is the same as $1\frac{1}{4}$. 1.

2. Figures 1 and 2 below show two polygonal regions used to approximate the area of the region inside an ellipse and above the *x*-axis.

- a. Which polygonal region has a greater area? Explain your reasoning.
- Which, if either, of the polygonal regions do you believe is closer in area to the region inside the ellipse and b. above the *x*-axis?

3. Figures 1 and 2 below show two polygonal regions used to approximate the area of the region inside a parabola and above the *x*-axis.

- a. Use the shaded polygonal region in Figure 1 to give a lower estimate of the area *a* under the curve and above the *x*-axis.
- b. Use the shaded polygonal region to give an upper estimate of the area *a* under the curve and above the *x*-axis.
- c. Use (a) and (b) to give an average estimate of the area *a*.
- 4. Problem 4 is an extension of Problem 3. Using the diagram, draw grid lines to represent each $\frac{1}{2}$ unit.

- a. What do the new grid lines divide each unit square into?
- b. Use the squares described in part (a) to determine a lower estimate of area *a* in the diagram.
- c. Use the squares described in part (a) to determine an upper estimate of area *a* in the diagram.
- d. Calculate an average estimate of the area under the curve and above the *x*-axis based on your upper and lower estimates in parts (b) and (c).
- e. Do you think your average estimate in Problem 4 is more or less precise than your estimate from Problem 3? Explain.

engage

Lesson 1: