Lesson 6: General Prisms and Cylinders and Their Cross-Sections

Classwork

Opening Exercise

Sketch a right rectangular prism.

Right rectangular prism: Let E and E^{\prime} be two parallel planes. Let B be a rectangular region ${ }^{1}$ in the plane E. At each point P of B, consider the segment $\overline{P P^{\prime}}$ perpendicular to E, joining P to a point P^{\prime} of the plane E^{\prime}. The union of all these segments is called a right rectangular prism.

General cylinder: (See Figure 1.) Let E and E^{\prime} be two parallel planes, let B be a region ${ }^{2}$ in the plane E, and let L be a line which intersects E and E^{\prime} but not B. At each point P of B, consider the segment $\overline{P P^{\prime}}$ parallel to L, joining P to a point P^{\prime} of the plane E^{\prime}. The union of all these segments is called a general cylinder with base B.

Figure 1

[^0]
Discussion

Figure 2
Example of a cross-section of a prism, where the intersection of a plane with the solid is parallel to the base.

Figure 3
A general intersection of a plane with a prism; sometimes referred to as a slice.

Exercise

Sketch the cross-section for the following figures:

Extension

Figure 4

Figure 5

Lesson Summary

Relevant Vocabulary

RIGHT RECTANGULAR PRISM: Let E and E^{\prime} be two parallel planes. Let B be a rectangular region in the plane E. At each point P of B, consider the segment $\overline{P P^{\prime}}$ perpendicular to E, joining P to a point P^{\prime} of the plane E^{\prime}. The union of all these segments is called a right rectangular prism.

LATERAL EDGE AND FACE OF A PRISM: Suppose the base B of a prism is a polygonal region and P_{i} is a vertex of B. Let P_{i}^{\prime} be the corresponding point in B^{\prime} such that $\overline{P_{i} P_{i}^{\prime}}$ is parallel to the line L defining the prism. The segment $\overline{P_{i} P_{i}^{\prime}}$ is called a lateral edge of the prism. If $\overline{P_{i} P_{i+1}}$ is a base edge of the base B (a side of B), and F is the union of all segments $\overline{P P^{\prime}}$ parallel to L for which P is in $\overline{P_{i} P_{i+1}}$ and P^{\prime} is in B^{\prime}, then F is a lateral face of the prism. It can be shown that a lateral face of a prism is always a region enclosed by a parallelogram.

General cylinder: Let E and E^{\prime} be two parallel planes, let B be a region in the plane E, and let L be a line which intersects E and E^{\prime} but not B. At each point P of B, consider the segment $\overline{P P^{\prime}}$ parallel to L, joining P to a point P^{\prime} of the plane E^{\prime}. The union of all these segments is called a general cylinder with base B.

Problem Set

1. Complete each statement below by filling in the missing term(s).
a. The following prism is called $a(n)$ \qquad prism.
b. If $\overline{A A^{\prime}}$ were perpendicular to the plane of the base, then the prism would be called a(n) \qquad prism.
c. The regions $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are called the \qquad of the prism.

d. $\overline{A A^{\prime}}$ is called $\mathrm{a}(\mathrm{n})$ \qquad -.
e. Parallelogram region $B B^{\prime} C^{\prime} C$ is one of four \qquad -.
2. The following right prism has trapezoidal base regions; it is a right trapezoidal prism. The lengths of the parallel edges of the base are 5 and 8 , and the nonparallel edges are 4 and 6 ; the height of the trapezoid is 3.7. The lateral edge length $D H$ is 10 . Find the surface area of the prism.

3. The base of the following right cylinder has a circumference of 5π and a lateral edge of 8 . What is the radius of the base? What is the lateral area of the right cylinder?

4. The following right general cylinder has a lateral edge of length 8 , and the perimeter of its base is 27 . What is the lateral area of the right general cylinder?

5. A right prism has base area 5 and volume 30 . Find the prism's height, h.
6. Sketch the figures formed if the rectangular regions are rotated around the provided axis.
a.

b.

7. A cross-section is taken parallel to the bases of a general cylinder and has an area of 18 . If the height of the cylinder is h, what is the volume of the cylinder? Explain your reasoning.
8. A general cylinder has a volume of 144 . What is one possible set of dimensions of the base and height of the cylinder if all cross-sections parallel to its bases are ...
a. Rectangles?
b. Right triangles?
c. Circles?
9. A general hexagonal prism is given. If P is a plane that is parallel to the planes containing the base faces of the prism, how does P meet the prism?
10. Two right prisms have similar bases. The first prism has height 5 and volume 100. A side on the base of the first prism has length 2 , and the corresponding side on the base of the second prism has length 3 . If the height of the second prism is 6 , what is its volume?
11. A tank is the shape of a right rectangular prism with base $2 \mathrm{ft} . \times 2 \mathrm{ft}$. and height 8 ft . The tank is filled with water to a depth of 6 ft . A person of height 6 ft . jumps in and stands on the bottom. About how many inches will the water be over the person's head? Make reasonable assumptions.

[^0]: ${ }^{1}$ (Fill in the blank.) A rectangular region is the union of a rectangle and \qquad
 ${ }^{2}$ In Grade 8, a region refers to a polygonal region (triangle, quadrilateral, pentagon, and hexagon) or a circular region, or regions that can be decomposed into such regions.

