Lesson 6: Segments That Meet at Right Angles

Classwork

Opening Exercise

Carlos thinks that the segment having endpoints $A(0,0)$ and $B(6,0)$ is perpendicular to the segment with endpoints $A(0,0)$ and $C(-2,0)$. Do you agree? Why or why not?

Working with a partner, given $A(0,0)$ and $B(3,-2)$, find the coordinates of a point C so that $\overline{A C} \perp \overline{A B}$.

Example 1

Given points $A(2,2), B(10,16), C(-3,1)$, and $D(4,-3)$, are segments $\overline{A B}$ and $\overline{C D}$ perpendicular? Are the lines containing the segments perpendicular? Explain.

Exercises 1-4

1. Given $A\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right), C\left(c_{1}, c_{2}\right)$, and $D\left(d_{1}, d_{2}\right)$, find a general formula in terms of $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$, d_{1}, and d_{2} that will let us determine whether segments $\overline{A B}$ and $\overline{C D}$ are perpendicular.
2. Recall the Opening Exercise of Lesson 4 in which a robot is traveling along a linear path given by the equation $y=3 x-600$. The robot hears a ping from a homing beacon when it reaches the point $B(400,600)$ and turns to travel along a linear path given by the equation $y-600=-\frac{1}{3}(x-400)$. If the homing beacon lies on the x-axis, what is its exact location? (Use your own graph paper to visualize the scenario.)
a. If point A is the y-intercept of the original equation, what are the coordinates of point A ?
b. What are the endpoints of the original segment of motion?
c. If the beacon lies on the x-axis, what is the y-value of this point, C ?
d. Translate point B to the origin. What are the coordinates of A^{\prime}, B^{\prime}, and C^{\prime} ?
e. Use the formula derived in this lesson to determine the coordinates of point C.
3. A triangle in the coordinate plane has vertices $A(0,10), B(-8,8)$, and $C(-3,5)$. Is it a right triangle? If so, at which vertex is the right angle? (Hint: Plot the points and draw the triangle on a coordinate plane to help you determine which vertex is the best candidate for the right angle.)
4. $A(-7,1), B(-1,3), C(5,-5)$, and $D(-5,-5)$ are vertices of a quadrilateral. If $\overline{A C}$ bisects $\overline{B D}$, but $\overline{B D}$ does not bisect $\overline{A C}$, determine whether $A B C D$ is a kite.

Problem Set

1. Are the segments through the origin and the points listed perpendicular? Explain.
a. $A(9,10), B(10,9)$
b. $\quad C(9,6), D(4,-6)$
2. Given $M(5,2), N(1,-4)$, and L listed below, are segments $\overline{L M}$ and $\overline{M N}$ perpendicular? Translate M to the origin, write the coordinates of the images of the points, then explain without using slope.
a. $\quad L(-1,6)$
b. $\quad L(11,-2)$
c. $L(9,8)$
3. Is triangle $P Q R$, where $P(-7,3), Q(-4,7)$, and $R(1,-3)$, a right triangle? If so, which angle is the right angle? Justify your answer.
4. A quadrilateral has vertices $(2+\sqrt{2},-1),(8+\sqrt{2}, 3),(6+\sqrt{2}, 6)$, and $(\sqrt{2}, 2)$. Prove that the quadrilateral is a rectangle.
5. Given points $G(-4,1), H(3,2)$, and $I(-2,-3)$, find the x-coordinate of point J with y-coordinate 4 so that the lines $\overleftrightarrow{G H}$ and $\overleftrightarrow{I J}$ are perpendicular.
6. A robot begins at position $(-80,45)$ and moves on a path to $(100,-60)$. It turns 90° counterclockwise.
a. What point with y-coordinate 120 is on this path?
b. Write an equation of the line after the turn.
c. If it stops to charge on the x-axis, what is the location of the charger?
7. Determine the missing vertex of a right triangle with vertices $(6,2)$ and $(5,5)$ if the third vertex is on the y-axis. Verify your answer by graphing.
8. Determine the missing vertex for a rectangle with vertices $(3,-2),(5,2)$, and $(-1,5)$, and verify by graphing. Then, answer the questions that follow.
a. What is the length of the diagonal?
b. What is a point on both diagonals in the interior of the figure?
9. A right triangle has vertices $(1,3)$ and $(6,-1)$ and a third vertex located in Quadrant IV.
a. Determine the coordinates of the missing vertex.
b. Reflect the triangle across the y-axis. What are the new vertices?
c. If the original triangle is rotated 90° counterclockwise about the vertex $(6,-1)$, what are the coordinates of the other vertices?
d. Now rotate the original triangle 90° clockwise about $(6,-1)$. What are the coordinates of the other vertices?
e. What do you notice about both sets of vertices? Explain what you observe.
