GFOMFTRY

Lesson 12: Dividing Segments Proportionately

Classwork

Exercises 1-4

1. Find the midpoint of \overline{ST} given S(-2,8) and T(10,-4).

2. Find the point on the directed segment from (-2,0) to (5,8) that divides it in the ratio of 1: 3.

- 3. Given \overline{PQ} and point R that lies on \overline{PQ} such that point R lies $\frac{7}{9}$ of the length of \overline{PQ} from point P along \overline{PQ} .
 - a. Sketch the situation described.

b. Is point *R* closer to *P* or closer to *Q*, and how do you know?

Lesson 12: Date: Dividing Segments Proportionately 10/22/14

GEOMETRY

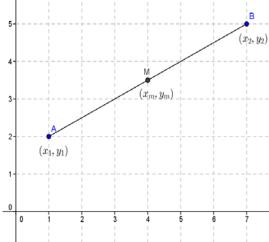
- c. Use the given information to determine the following ratios:
 - i. *PR*: *PQ*
 - ii. *RQ*: *PQ*
 - iii. PR: RQ
 - iv. RQ:PR
- d. If the coordinates of point P are (0,0) and the coordinates of point R are (14,21), what are the coordinates of point Q?

- 4. A robot is at position A(40, 50) and is heading toward the point B(2000, 2000) along a straight line at a constant speed. The robot will reach point B in 10 hours.
 - a. What is the location of the robot at the end of the third hour?

b. What is the location of the robot five minutes before it reaches point *B*?

c. If the robot keeps moving along the straight path at the same constant speed as it passes through point *B*, what will be its location at the twelfth hour?

d. Compare the value of the abscissa (x-coordinate) to the ordinate (y-coordinate) before, at, and after the robot passes point B?


e. Could you have predicted the relationship that you noticed in part (d) based on the coordinates of points *A* and *B*?

Lesson 12: Date: Dividing Segments Proportionately 10/22/14

Problem Set

- Given F(0,2) and G(2,6). If point S lies $\frac{5}{12}$ of the way along \overline{FG} , closer to F than to G, find the coordinates of S. Then verify that this point lies on \overline{FG} .
- 2. Point C lies $\frac{5}{6}$ of the way along \overline{AB} , closer to B than to A. If the coordinates of point A are (12,5) and the coordinates of point C are (9.5, -2.5), what are the coordinates of point B?
- Find the point on the directed segment from (-3, -2) to (4, 8) that divides it into a ratio of 3: 2.
- A robot begins its journey at the origin, point O, and travels along a straight line path at a constant rate. Fifteen minutes into its journey the robot is at A(35, 80).
 - If the robot does not change speed or direction, where will it be 3 hours into its journey (Call this point B)?
 - The robot continues past point B for a certain period of time until it has traveled an additional $\frac{3}{4}$ the distance it traveled in the first 3 hours and stops.
 - How long did the robot's entire journey take?
 - What is the robot's final location?
 - What was the distance the robot traveled in the last leg of its journey?
- 5. Given \overline{LM} and point R that lies on \overline{LM} , identify the following ratios given that point R lies $\frac{a}{b}$ of the way along \overline{LM} , closer to L than to M.
 - LR:LM
 - RM:LMb.
 - RL: RM
- Given \overline{AB} with midpoint M as shown, prove that the point on the directed segment from A to B that divides \overline{AB} into a ratio of 1: 3 is the midpoint of \overline{AM} .

Lesson 12: Date:

Dividing Segments Proportionately 10/22/14

