Lesson 13: Analytic Proofs of Theorems Previously Proved by

Synthetic Means

Classwork

Opening Exercise

Let $A(30,40), B(60,50)$, and $C(75,120)$ be vertices of a triangle.
a. Find the coordinates of the midpoint M of $\overline{A B}$ and the point G_{1} that is the point one-third of the way along $\overline{M C}$, closer to M than to C.
b. Find the coordinates of the midpoint N of $\overline{B C}$ and the point G_{2} that is the point one-third of the way along $\overline{N A}$, closer to N than to A.
c. Find the coordinates of the midpoint R of $\overline{C A}$ and the point G_{3} that is the point one-third of the way along $\overline{R B}$, closer to R than to B.

Exercise 1

a. Given triangle $A B C$ with vertices $A\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right)$, and $C\left(c_{1}, c_{2}\right)$, find the coordinates of the point of concurrency.
b. Let $A(-23,12), B(13,36)$, and $C(23,-1)$ be vertices of a triangle. Where will the medians of this triangle intersect?

Analytic Proofs of Theorems Previously Proved by Synthetic Means 10/22/14

Exercise 2

Prove that the diagonal of a parallelogram bisect each other.

Problem Set

1. Point M is the midpoint of segment $\overline{A C}$. Find the coordinates of M :
a. $\quad A(2,3), C(6,10)$
b. $A(-7,5), C(4,-9)$
2. $\quad M(-2,10)$ is the midpoint of segment $\overline{A B}$. If A has coordinates $(4,-5)$, what are the coordinates of B ?
3. Line A is the perpendicular bisector of segment $\overline{B C}$ with $B(-2,-1)$ and $C(4,1)$.
a. What is the midpoint of $\overline{B C}$?
b. What is the slope of $\overline{B C}$?
c. What is the slope of line A ? (Remember, it is perpendicular to $\overline{B C}$.)
d. Write the equation of line A, the perpendicular bisector of $\overline{B C}$.
4. Find the coordinates of the intersection of the medians of $\triangle A B C$ given $A(-5,3), B(6,-4)$, and $C(10,10)$.
5. Use coordinates to prove that the diagonals of a parallelogram meet at the intersection of the segments that connect the midpoints of its opposite sides.
6. Given a quadrilateral with vertices $E(0,5), F(6,5), G(4,0)$, and $H(-2,0)$:
a. Prove quadrilateral $E F G H$ is a parallelogram.
b. Prove $(2,2.5)$ is a point on both diagonals of the quadrilateral.
7. Prove quadrilateral $W X Y Z$ with vertices $W(1,3), X(4,8), Y(10,11)$, and $Z(4,1)$ is a trapezoid.
8. Given quadrilateral $J K L M$ with vertices $J(-4,2), K(1,5), L(4,0)$, and $M(-1,-3)$:
a. Is it a trapezoid? Explain.
b. Is it a parallelogram? Explain.
c. Is it a rectangle? Explain.
d. Is it a rhombus? Explain.
e. Is it a square? Explain.
f. Name a point on the diagonal of JKLM. Explain how you know.
