Lesson 15: The Distance from a Point to a Line

Classwork

Exercise 1

A robot is moving along the line $20 x+30 y=600$. A homing beacon sits at the point $(35,40)$.
a. Where on this line will the robot hear the loudest ping?
b. At this point, how far will the robot be from the beacon?

Exercise 2

For the following problems, use the formula to calculate the distance between the point P and the line l.

$$
d=\sqrt{\left(\frac{p+q m-b m}{1+m^{2}}-p\right)^{2}+\left(m\left(\frac{p+q m-b m}{1+m^{2}}\right)+b-q\right)^{2}}
$$

a. $\quad P(0,0)$ and the line $y=10$
b. $\quad P(0,0)$ and the line $y=x+10$
c. $\quad P(0,0)$ and the line $y=x-6$

Problem Set

1. Given $\triangle A B C$ with vertices $A(3,-1), B(2,2)$, and $C(5,1)$.
a. Find the slope of the angle bisector of $\angle A B C$.
b. Prove that the bisector of $\angle A B C$ is the perpendicular bisector of $\overline{A C}$.
c. Write the equation of the line containing $\overline{A D}$.
2. Use the distance formula from today's lesson to find the distance between the point $P(-2,1)$ and the line $y=2 x$.
3. Confirm the results obtained in Problem 1 using another method.
4. Find the perimeter of quadrilateral $D E B F$ shown below.

