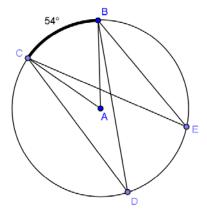

Lesson 8: Arcs and Chords

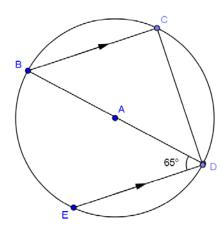
Classwork


Opening Exercise

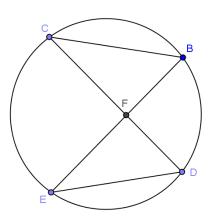
Given circle A with $\overline{BC} \perp \overline{DE}$, FA = 6, and AC = 10. Find BF and DE. Explain your work.

Exercises

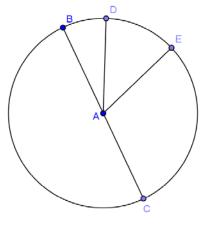
1. Given circle A with $\widehat{mBC}=54^0$ and $\angle CDB\cong \angle DBE$, find \widehat{mDE} . Explain your work.


Lesson 8: Date: Arcs and Chords 10/22/14

(cc) BY-NC-SA



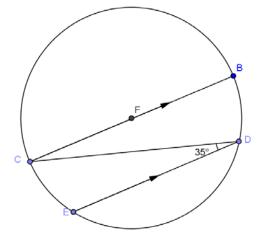
2. If two arcs in a circle have the same measure, what can you say about the quadrilateral formed by the four endpoints? Explain.


3. Find the angle measure of \widehat{CD} and \widehat{ED} .

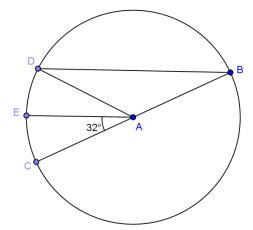
- 4. $m\widehat{CB} = m\widehat{ED}$ and $m\widehat{BC}: m\widehat{BD}: m\widehat{EC} = 1:2:4$. Find
 - a. *m∠BCF*
 - b. $m \angle EDF$
 - c. *m∠CFE*

- 5. \overline{BC} is a diameter of circle A. $\widehat{mBD}:\widehat{mDE}:\widehat{mEC}=1:3:5$. Find
 - a. $m\widehat{BD}$
 - b. $m\widehat{DEC}$
 - c. $m\widehat{ECB}$

Lesson 8: Date: Arcs and Chords 10/22/14


Lesson Summary

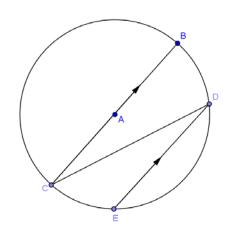
THEOREMS:


- Congruent chords have congruent arcs.
- Congruent arcs have congruent chords.
- Arcs between parallel chords are congruent.

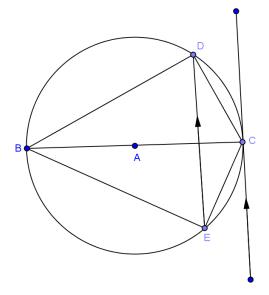
Problem Set

- 1. Find
 - a. $m\widehat{CE}$
 - b. $m\widehat{BD}$
 - c. $m\widehat{ED}$

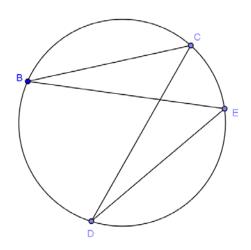
- 2. In circle A, \overline{BC} is a diameter, $\widehat{mCE} = \widehat{mED}$, and $m \angle CAE = 32^{\circ}$.
 - a. Find $m \angle CAD$.
 - b. Find $m \angle ADC$.



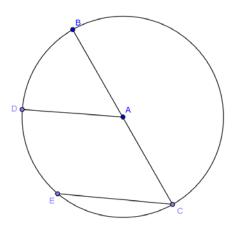
Lesson 8: Date: Arcs and Chords 10/22/14


S.55

GEOMETRY


3. In circle A, \overline{BC} is a diameter, $2m\widehat{CE}=m\widehat{ED}$, and $\overline{BC}\|\overline{DE}$. Find $m\angle CDE$.

- 4. In circle A, \overline{BC} is a diameter and $\widehat{CE} = 68^{\circ}$.
 - a. Find $m\widehat{CD}$.
 - b. Find $m \angle DBE$.
 - c. Find $m \angle DCE$


5. In the circle given, $\widehat{BC} \cong \widehat{ED}$. Prove $\overline{BE} \cong \overline{DC}$.

Lesson 8: Date: Arcs and Chords 10/22/14

engage^{ny}

6. Given circle A with $\overline{AD} || \overline{CE}$, show $\widehat{BD} \cong \widehat{DE}$.

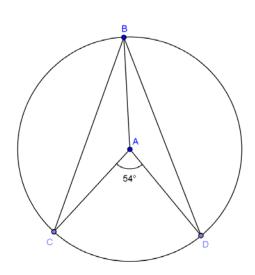
7. In circle A, \overline{AB} is a radius and $\widehat{BC} \cong \widehat{BD}$ and $m \angle CAD = 54^{\circ}$. Find $m \angle ABC$. Complete the proof.

$$BC = BD$$

$$m \angle \underline{\hspace{1cm}} = m \angle \underline{\hspace{1cm}}$$

$$m \angle BAC + m \angle CAD + m \angle BAD =$$

$$2m\angle$$
____ + 54° = 360° _____


$$m \angle BAC = ___$$

$$AB = AC$$

$$m \angle \underline{\hspace{1cm}} = m \angle \underline{\hspace{1cm}}$$

$$2m\angle ABC + m\angle BAC =$$

$$m \angle ABC = __$$

