Lesson 13: The Inscribed Angle Alternate a Tangent Angle

Classwork

Opening Exercise

1. In circle $A, m \widehat{B D}=56^{\circ}$, and $\overline{B C}$ is a diameter. Find the listed measure, and explain your answer.
a. $m \angle B D C$
b. $m \angle B C D$
c. $m \angle D B C$
d. $m \angle B F G$

e. $m \widehat{B C}$
f. $m \widehat{D C}$
g. Is the $m \angle B G D=56^{\circ}$? Explain.
h. How do you think we could determine the measure of $\angle B G D$?

Example 1

Diagram 1

Diagram 2

Examine the diagrams shown. Develop a conjecture about the relationship between a and b.

Test your conjecture by using a protractor to measure a and b.

	a	b
Diagram 1		
Diagram 2		

Do your measurements confirm the relationship you found in your homework?
If needed, revise your conjecture about the relationship between a and b :

Now test your conjecture further using the circle below.

a	b

Now, we will prove your conjecture, which is stated below as a theorem.

The tangent-secant theorem: Let A be a point on a circle, let $\overrightarrow{A B}$ be a tangent ray to the circle, and let C be a point on the circle such that $\overleftrightarrow{A C}$ is a secant to the circle. If $a=m \angle B A C$ and b is the angle measure of the arc intercepted by $\angle B A C$, then $a=\frac{1}{2} b$.

Given circle A with tangent $\overleftrightarrow{B G}$, prove what we have just discovered using what you know about the properties of a circle and tangent and secant lines.
a. Draw triangle $A B C$. What is the measure of $\angle B A C$? Explain.
b. What is the measure of $\angle A B G$? Explain.

c. Express the measure of the remaining two angles of triangle $A B C$ in terms of " a " and explain.
d. What is the measure of $\angle B A C$ in terms of " a "? Show how you got the answer.
e. Explain to your neighbor what we have just proven.

Exercises

Find x, y, a, b, and/or c.
1.

2.

3.

4.

5.

Lesson Summary

Theorems:

- Conjecture: Let A be a point on a circle, let $\overrightarrow{\mathrm{AB}}$ be a tangent ray to the circle, and let C be a point on the circle such that $\overleftrightarrow{A C}$ is a secant to the circle. If $a=m \angle B A C$ and b is the angle measure of the arc intercepted by $\angle B A C$, then $\mathrm{a}=\frac{1}{2} \mathrm{~b}$.
- The tangent-secant theorem: Let A be a point on a circle, let $\overrightarrow{\mathrm{AB}}$ be a tangent ray to the circle, and let C be a point on the circle such that $\overleftrightarrow{A C}$ is a secant to the circle. If $a=m \angle B A C$ and b is the angle measure of the arc intercepted by $\angle B A C$, then $\mathrm{a}=\frac{1}{2} \mathrm{~b}$.
- Suppose $\overline{\mathrm{AB}}$ is a chord of circle C , and $\overline{\mathrm{AD}}$ is a tangent segment to the circle at point A . If E is any point other than A or B in the arc of C on the opposite side of $\overline{A B}$ from D, then $m \angle B E A=m \angle B A D$.

Problem Set

In Problems 1-9, solve for a, b, and/or c.
1.

2.

3.

10. $\overleftrightarrow{B H}$ is tangent to circle $A . \overline{D F}$ is a diameter. Find
a. $m \angle B C D$
b. $m \angle B A F$
c. $m \angle B D A$
d. $m \angle F B H$
e. $m \angle B G F$

11. $\overline{B G}$ is tangent to circle $A . \overline{B E}$ is a diameter. Prove: (i) $f=a$ and (ii) $d=c$

