Lesson 13: The Inscribed Angle Alternate a Tangent Angle

Classwork

Opening Exercise

- 1. In circle A, $m\widehat{BD}=56^\circ$, and \overline{BC} is a diameter. Find the listed measure, and explain your answer.
 - a. $m \angle BDC$
 - b. $m \angle BCD$
 - c. $m \angle DBC$
 - d. $m \angle BFG$
 - e. $m\widehat{BC}$
 - f. $m\widehat{DC}$
 - g. Is the $m \angle BGD = 56^{\circ}$? Explain.
 - h. How do you think we could determine the measure of $\angle BGD$?

Example 1

Diagram 1

Diagram 2

Examine the diagrams shown. Develop a conjecture about the relationship between a and b.

Test your conjecture by using a protractor to measure a and b.

	а	b
Diagram 1		
Diagram 2		

Do your measurements confirm the relationship you found in your homework?

If needed, revise your conjecture about the relationship between *a* and *b*:

Now test your conjecture further using the circle below.

а	b

Now, we will prove your conjecture, which is stated below as a theorem.

THE TANGENT-SECANT THEOREM: Let A be a point on a circle, let \overrightarrow{AB} be a tangent ray to the circle, and let C be a point on the circle such that \overrightarrow{AC} is a secant to the circle. If $a = m \angle BAC$ and b is the angle measure of the arc intercepted by $\angle BAC$, then $a = \frac{1}{2}b$.

Given circle A with tangent \overrightarrow{BG} , prove what we have just discovered using what you know about the properties of a circle and tangent and secant lines.

a. Draw triangle ABC. What is the measure of $\angle BAC$? Explain.

- b. What is the measure of $\angle ABG$? Explain.
- c. Express the measure of the remaining two angles of triangle ABC in terms of "a" and explain.
- d. What is the measure of $\angle BAC$ in terms of "a"? Show how you got the answer.
- e. Explain to your neighbor what we have just proven.

Exercises

Find x, y, a, b, and/or c.

1.

3.

4.

(CC) BY-NC-SA

Lesson Summary

THEOREMS:

- **CONJECTURE:** Let A be a point on a circle, let \overrightarrow{AB} be a tangent ray to the circle, and let C be a point on the circle such that \overrightarrow{AC} is a secant to the circle. If $a = m \angle BAC$ and b is the angle measure of the arc intercepted by $\angle BAC$, then $a = \frac{1}{2}b$.
- THE TANGENT-SECANT THEOREM: Let A be a point on a circle, let \overrightarrow{AB} be a tangent ray to the circle, and let C be a point on the circle such that \overrightarrow{AC} is a secant to the circle. If $a = m \angle BAC$ and b is the angle measure of the arc intercepted by $\angle BAC$, then $a = \frac{1}{2}b$.
- Suppose \overline{AB} is a chord of circle C, and \overline{AD} is a tangent segment to the circle at point A. If E is any point other than A or B in the arc of C on the opposite side of \overline{AB} from D, then $m \angle BEA = m \angle BAD$.

Problem Set

In Problems 1–9, solve for a, b, and/or c.

1.

2.

4.

5.

6.

7.

8.

- 10. \overrightarrow{BH} is tangent to circle A. \overline{DF} is a diameter. Find
 - a. *m∠BCD*
 - b. $m \angle BAF$
 - c. $m \angle BDA$
 - d. $m \angle FBH$
 - e. *m∠BGF*

11. \overline{BG} is tangent to circle A. \overline{BE} is a diameter. Prove: (i) f=a and (ii) d=c

