

Lesson 14: Secant Lines; Secant Lines That Meet Inside a Circle

Classwork

Opening Exercise

 \overrightarrow{DB} is tangent to the circle as shown.

- a. Find the values of *a* and *b*.
- b. Is \overline{CB} a diameter of the circle? Explain.

Exercises 1–2

1. In circle P, \overline{PO} is a radius, and $m\widehat{MO} = 14^{\circ}$. Find $m \angle MOP$, and explain how you know.

Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>

NYS COMMON CORE MATHEMATICS CURRICULUM

2. In the circle shown, $\widehat{mCE} = 55^{\circ}$. Find $m \angle DEF$ and \widehat{mEG} . Explain your answer.

a.

Example 1

b. Find x.

Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

S.99

Lesson 14

We can state the results of part (b) of this example as the following theorem:

SECANT ANGLE THEOREM: INTERIOR CASE: The measure of an angle whose vertex lies in the interior of a circle is equal to half the sum of the angle measures of the arcs intercepted by it and its vertical angle.

4.

Exercises 3–7

In Exercises 3–5, find x and y.

3.

5.

Lesson 14: Date: Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

6. In circle, \overline{BC} is a diameter. Find x and y.

7. In the circle shown, \overline{BC} is a diameter. DC: BE = 2:1. Prove $y = 180 - \frac{3}{2}x$ using a two-column proof.

Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

Lesson Summary

THEOREMS:

SECANT ANGLE THEOREM: INTERIOR CASE. The measure of an angle whose vertex lies in the interior of
a circle is equal to half the sum of the angle measures of the arcs intercepted by it and its
vertical angle.

Relevant Vocabulary

- **TANGENT TO A CIRCLE:** A *tangent line to a circle* is a line in the same plane that intersects the circle in one and only one point. This point is called the *point of tangency*.
- TANGENT SEGMENT/RAY: A segment is a tangent segment to a circle if the line that contains it is tangent to the circle and one of the end points of the segment is a point of tangency. A ray is called a tangent ray to a circle if the line that contains it is tangent to the circle and the vertex of the ray is the point of tangency.
- SECANT TO A CIRCLE: A secant line to a circle is a line that intersects a circle in exactly two points.

Problem Set

In Problems 1–4, find *x*.

Lesson 14: Date: Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

GEOMETRY

5. Find x ($m\widehat{CE}$) and y ($m\widehat{DG}$).

Lesson 14: Date: Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

GEOMETRY

6. Find the ratio of $m\widehat{EFC}: m\widehat{DGB}$.

7. \overline{BC} is a diameter of circle A. Find x.

Lesson 14: Date: Secant Lines; Secant Lines That Meet Inside a Circle 10/22/14

NYS COMMON CORE MATHEMATICS CURRICULUM	Lesson 14	
	GEOME	ETRY

8. Show that the general formula we discovered in Example 1 also works for central angles. (Hint: Extend the radii to form 2 diameters, and use relationships between central angles and arc measure.)

