Lesson 14: Secant Lines; Secant Lines That Meet Inside a Circle

Classwork

Opening Exercise

$\overleftrightarrow{D B}$ is tangent to the circle as shown.
a. Find the values of a and b.
b. Is $\overline{C B}$ a diameter of the circle? Explain.

Exercises 1-2

1. In circle $P, \overline{P O}$ is a radius, and $m \widehat{M O}=14^{\circ}$. Find $m \angle M O P$, and explain how you know.

2. In the circle shown, $m \widehat{\mathrm{CE}}=55^{\circ}$. Find $m \angle \mathrm{DEF}$ and $m \widehat{\mathrm{EG}}$. Explain your answer.

Example 1
a. Find x. Justify your answer.

b. Find x.

We can state the results of part (b) of this example as the following theorem:
Secant angle theorem: interior case: The measure of an angle whose vertex lies in the interior of a circle is equal to half the sum of the angle measures of the arcs intercepted by it and its vertical angle.

Exercises 3-7

In Exercises 3-5, find x and y.
3.

4.

5.

6. In circle, $\overline{B C}$ is a diameter. Find x and y.

7. In the circle shown, $\overline{B C}$ is a diameter. $D C: B E=2: 1$. Prove $y=180-\frac{3}{2} x$ using a two-column proof.

Lesson Summary

Theorems:

- Secant angle theorem: interior case. The measure of an angle whose vertex lies in the interior of a circle is equal to half the sum of the angle measures of the arcs intercepted by it and its vertical angle.

Relevant Vocabulary

- Tangent to a circle: A tangent line to a circle is a line in the same plane that intersects the circle in one and only one point. This point is called the point of tangency.
- TANGENT SEGMENT/RAY: A segment is a tangent segment to a circle if the line that contains it is tangent to the circle and one of the end points of the segment is a point of tangency. A ray is called a tangent ray to a circle if the line that contains it is tangent to the circle and the vertex of the ray is the point of tangency.
- Secant to a circle: A secant line to a circle is a line that intersects a circle in exactly two points.

Problem Set

In Problems 1-4, find x.
1.

2.

3.

4.

5. Find $x(m \widehat{C E})$ and $y(m \widehat{D G})$.

6. Find the ratio of $m \widehat{E F C}: m \widehat{D G B}$.

7. $\overline{B C}$ is a diameter of circle A. Find x.

8. Show that the general formula we discovered in Example 1 also works for central angles. (Hint: Extend the radii to form 2 diameters, and use relationships between central angles and arc measure.)

