

Lesson 16: Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams

Classwork

Opening Exercise

Identify the type of angle and the angle/arc relationship, and then find the measure of x.

Lesson 16: Date: Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams 10/22/14

Example 1

Measure the lengths of the chords in centimeters and record them in the table.

Circle #	<i>a</i> (cm)	<i>b</i> (cm)	<i>c</i> (cm)	<i>d</i> (cm)	Do you notice a relationship?
а					
b					
с					
d					

Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams 10/22/14

Lesson 16:

10/22/14

Date:

COMMON CORE

GEOMETRY

Lesson 16

Example 2

Measure the lengths of the chords in centimeters and record them in the table.

Circle #	<i>a</i> (cm)	<i>b</i> (cm)	<i>c</i> (cm)	<i>d</i> (cm)	Do you notice a relationship?
а					
b					
С					
d					

Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams

Diagram	How the two shapes overlap	Relationship between a, b, c and d

The inscribed angle theorem and its family:

Lesson 16: Date:

Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams 10/22/14

Lesson Summary

THEOREMS:

- When secant lines intersect inside a circle, use $a \cdot b = c \cdot d$. •
- When secant lines intersect outside of a circle, use a(a + b) = c(c + d). ٠

Relevant Vocabulary

SECANT TO A CIRCLE: A secant line to a circle is a line that intersects a circle in exactly two points.

Problem Set

1. Find *x*.

3. $DF < FB, DF \neq 1, DF < FE$. Prove DF = 3

2. Find *x*.

4. CE = 6, CB = 9, CD = 18. Show CF = 3.

Lesson 16: Date:

Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams 10/22/14

GEOMETRY

5. Find *x*.

6. Find *x*.

8. Find *x*.

9. In the circle shown, DE = 11, BC = 10, DF = 8. Find FE, BF, FC.

Lesson 16: Date: Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams 10/22/14

10. In the circle shown, $\widehat{mDBG} = 150^\circ$, $\widehat{mDB} = 30^\circ$, $m\angle CEF = 60^\circ$, DF = 8, DB = 4, GF = 12.

- a. Find $m \angle GDB$.
- b. Prove $\Delta DBF \sim \Delta ECF$.
- c. Set up a proportion using sides \overline{CE} and \overline{GE} .
- d. Set up an equation with \overline{CE} and \overline{GE} using a theorem for segment lengths from this section.
- e. Solve for *CE* and *GE*.

Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams 10/22/14

