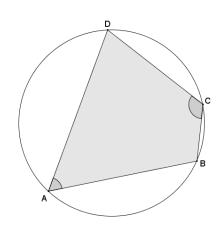


Lesson 20: Cyclic Quadrilaterals

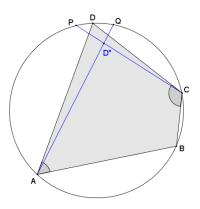
Classwork

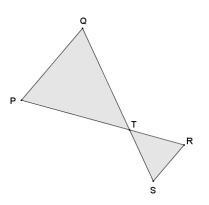

Opening Exercise

Given cyclic quadrilateral *ABCD* shown in the diagram, prove that $x + y = 180^{\circ}$.

Example 1:

Given quadrilateral *ABCD* with $m \angle A + m \angle C = 180^\circ$, prove that quadrilateral *ABCD* is cyclic; in other words, prove that points *A*, *B*, *C*, and *D* lie on the same circle.



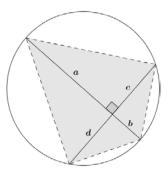


Exercises

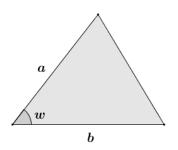
1. Assume that vertex D'' lies inside the circle as shown in the diagram. Use a similar argument to Example 1 to show that vertex D'' cannot lie inside the circle.

2. Quadrilateral *PQRS* is a cyclic quadrilateral. Explain why $\triangle PQT \sim \triangle SRT$.

engage^{ny}

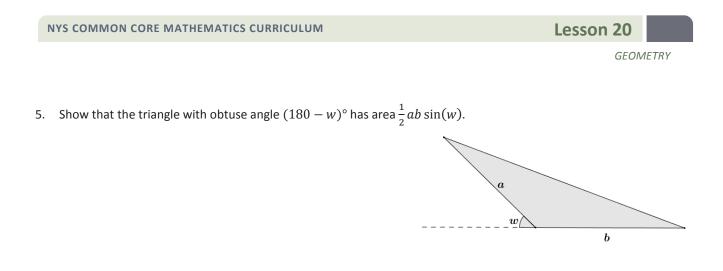


© 2014 Common Core, Inc. Some rights reserved. commoncore.org

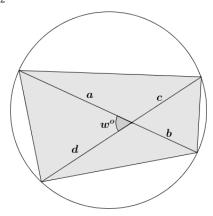


NYS COMMON CORE MATHEMATICS CURRICULUM	Lesson 20
	GEOMETRY

3. A cyclic quadrilateral has perpendicular diagonals. What is the area of the quadrilateral in terms of *a*, *b*, *c*, and *d* as shown?



4. Show that the triangle in the diagram has area $\frac{1}{2}ab\sin(w)$.



6. Show that the area of the cyclic quadrilateral shown in the diagram is $Area = \frac{1}{2}(a+b)(c+d)\sin(w)$.

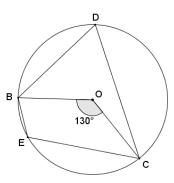
Lesson Summary

THEOREMS:

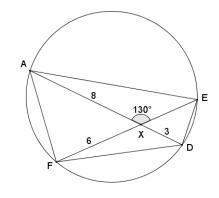
Given a convex quadrilateral, the quadrilateral is cyclic if and only if one pair of opposite angles is supplementary.

The area of a triangle with side lengths *a* and *b* and acute included angle with degree measure *w*:

Area = $\frac{1}{2}ab \cdot \sin(w)$.


The area of a cyclic quadrilateral *ABCD* whose diagonals \overline{AC} and \overline{BD} intersect to form an acute or right angle with degree measure w: Area $(ABCD) = \frac{1}{2} \cdot AC \cdot BD \cdot \sin(w)$.

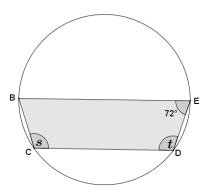
Relevant Vocabulary

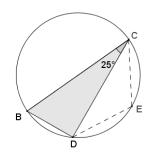

CYCLIC QUADRILATERAL: A quadrilateral inscribed in a circle is called a *cyclic quadrilateral*.

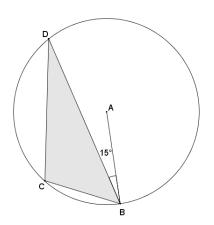
Problem Set

1. Quadrilateral *BDCE* is cyclic, *O* is the center of the circle, and $m \angle BOC = 130^{\circ}$. Find $m \angle BEC$.

2. Quadrilateral *FAED* is cyclic, AX = 8, FX = 6, XD = 3, and $m \angle AXE = 130^{\circ}$. Find the area of quadrilateral *FAED*.

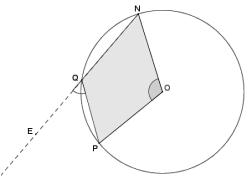

engage

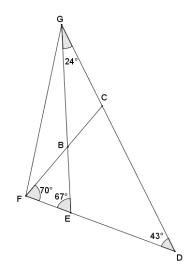


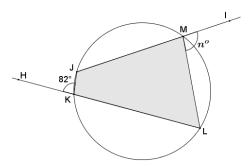

3. In the diagram below, $\overline{BE} \parallel \overline{CD}$, and $m \angle BED = 72^{\circ}$. Find the value of s and t.

4. In the diagram below, \overline{BC} is the diameter, $m \angle BCD = 25^{\circ}$, and $\overline{CE} \cong \overline{DE}$. Find $m \angle CED$.

5. In circle A, $m \angle ABD = 15^{\circ}$. Find $m \angle BCD$.

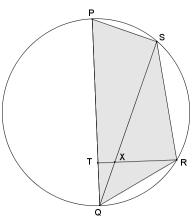





6. Given the diagram below, *O* is the center of the circle. If $m \angle NOP = 112^\circ$, find $m \angle PQE$.

7. Given the angle measures as indicated in the diagram below, prove that vertices *C*, *B*, *E*, and *D* lie on a circle.

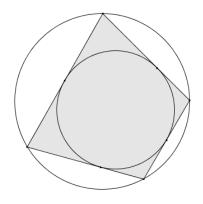
8. In the diagram below, quadrilateral JKLM is cyclic. Find the value of n.

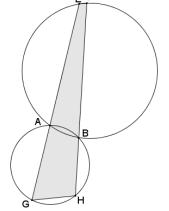


Lesson 20

- Do all four perpendicular bisectors of the sides of a cyclic quadrilateral pass through a common point? Explain. 9.
- 10. The circles in the diagram below intersect at points A and B. If $m \angle FHG = 100^{\circ}$ and $m \angle HGE = 70^{\circ}$, find $m \angle GEF$ and $m \angle EFH$.

- 11. A quadrilateral is called *bicentric* if it is both cyclic and possesses an inscribed circle. (See diagram to the right.)
 - a. What can be concluded about the opposite angles of a bicentric quadrilateral? Explain.
 - Each side of the quadrilateral is tangent to the inscribed circle. What b. does this tell us about the segments contained in the sides of the quadrilateral?
 - Based on the relationships highlighted in part (b), there are four pairs of c. congruent segments in the diagram. Label segments of equal length with *a*, *b*, *c*, and *d*.
 - What do you notice about the opposite sides of the bicentric quadrilateral? d.
- 12. Quadrilateral *PSRQ* is cyclic such that \overline{PQ} is the diameter of the circle. If $\angle QRT \cong \angle QSR$, prove that $\angle PTR$ is a right angle, and show that S, X, T, and P lie on a circle.


Date:


© 2014 Common Core, Inc. Some rights reserved. commoncore.org

S.150

