

Lesson 4: Writing Products as Sums and Sums as Products

Classwork

Example 1

a.	2(x+5)	
b.	3(x + 4)	
c.	6(<i>x</i> + 1)	
d.	7(<i>x</i> – 3)	
e.		5x + 30
f.		8x + 8
g.		3x - 12
h.		15x + 20

Exercise 1

Rewrite the expressions as a product of two factors.

b. 55a + 11 d. 144q - 15

Lesson 4: Date: Writing Products as Sums and Sums as Products 10/30/14

S.22

Example 2

Let the variables x and y stand for positive integers, and let 2x, 12y, and 8 represent the area of three regions in the array. Determine the length and width of each rectangle if the width is the same for each rectangle.

Exercise 2

a. Write the product and sum of the expressions being represented in the rectangular array.

b. Factor 48j + 60k + 24 by finding the greatest common factor of the terms.

S.23

Exercise 3

For each expression, write each sum as a product of two factors. Emphasize the importance of the distributive property. Use various equivalent expressions to justify equivalency.

a.	$2 \cdot 3 + 5 \cdot 3$	b.	(2+5) + (2+5) + (2+5)	C.	$2 \cdot 2 + (5 + 2) + (5 \cdot 2)$
d.	$x \cdot 3 + 5 \cdot 3$	e.	(x + 5) + (x + 5) + (x + 5)	f.	$2x + (5+x) + 5 \cdot 2$
g.	$x \cdot 3 + y \cdot 3$	h.	(x + y) + (x + y) + (x + y)	i.	2x + (y + x) + 2y

Example 3

A new miniature golf and arcade opened up in town. For convenient ordering, a play package is available to purchase. It includes two rounds of golf and 20 arcade tokens, plus 3.00 off the regular price. There is a group of six friends purchasing this package. Let g represent the cost of a round of golf, and let t represent the cost of a token. Write two different expressions that represent the total amount this group spent. Explain how each expression describes the situation in a different way.

Writing Products as Sums and Sums as Products 10/30/14

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This work is licensed under a

Exercise 4

- a. What is the opposite of (-6v + 1)?
- b. Using the distributive property, write an equivalent expression for part (a).

Example 5

Rewrite 5a - (a - 3b) in standard form. Justify each step, applying the rules for subtracting and the distributive property.

Exercise 5

Expand each expression and collect like terms.

a. -3(2p - 3q)

b.
$$-a - (a - b)$$

Problem Set

- 1. Write each expression as the product of two factors.
 - a. $1 \cdot 3 + 7 \cdot 3$
 - b. (1+7) + (1+7) + (1+7)
 - c. $2 \cdot 1 + (1+7) + (7 \cdot 2)$
 - d. $h \cdot 3 + 6 \cdot 3$
 - e. (h+6) + (h+6) + (h+6)
 - f. $2h + (6+h) + 6 \cdot 2$
 - g. $j \cdot 3 + k \cdot 3$
 - h. (j+k) + (j+k) + (j+k)
 - i. 2j + (k+j) + 2k
- 2. Write each sum as a product of two factors.
 - a. $6 \cdot 7 + 3 \cdot 7$ b. (8 + 9) + (8 + 9) + (8 + 9)c. $4 + (12 + 4) + (5 \cdot 4)$ d. $2y \cdot 3 + 4 \cdot 3$ e. (x + 5) + (x + 5)f. $3x + (2 + x) + 5 \cdot 2$ g. $f \cdot 6 + g \cdot 6$
 - h. (c+d) + (c+d) + (c+d) + (c+d)
 - i. 2r + r + s + 2s
- 3. Use the following rectangular array to answer the questions below.

- a. Fill in the missing information.
- b. Write the sum represented in the rectangular array.
- c. Use the missing information from part (a) to write the sum from part (b) as a product of two factors.
- 4. Write the sum as a product of two factors.
 - a. 81*w* + 48
 - b. 10 25t
 - c. 12a + 16b + 8

Writing Products as Sums and Sums as Products 10/30/14

S.26

- 5. Xander goes to the movies with his family. Each family member buys a ticket and two boxes of popcorn. If there are five members of his family, let *t* represent the cost of a ticket and *p* represent the cost of a box of popcorn. Write two different expressions that represent the total amount his family spent. Explain how each expression describes the situation in a different way.
- 6. Write each expression in standard form.
 - a. -3(1-8m-2n)
 - b. 5 7(-4q + 5)
 - c. -(2h-9) 4h
 - d. 6(-5r-4) 2(r-7s-3)
- 7. Combine like terms to write each expression in standard form.
 - a. (r-s) + (s-r)
 - b. (-r+s) + (s-r)
 - c. (-r-s) (-s-r)
 - d. (r-s) + (s-t) + (t-r)
 - e. (r-s) (s-t) (t-r)

S.27

Lesson 4

