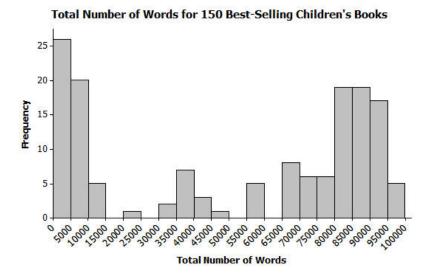
Lesson 16: Methods for Selecting a Random Sample

Classwork

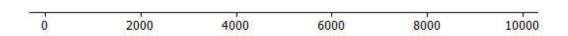
In this lesson, you will obtain random numbers to select a random sample. You will also design a plan for selecting a random sample to answer a statistical question about a population.


Example 1: Sampling Children's Books

What is the longest book you have ever read? *The Hobbit* has 95,022 words, and *The Cat in the Hat* has 830 words. Popular books vary in the number of words they have—not just the number of *different* words but the total number of words. The table below shows the total number of words in some of those books. The histogram displays the total number of words in 150 best-selling children's books with fewer than 100,000 words.

Book	Words	Book	Words	Book	Words
Black Beauty	59,635	Charlie and the Chocolate Factory	30,644	The Hobbit	95,022
The Catcher in the Rye	73,404	Old Yeller 35,968 Judy Moody Was		Judy Moody Was in a Mood	11,049
The Adventures of Tom Sawyer	69,066	The Cat in the Hat	830	Treasure Island	66,950
The Secret Garden	80,398	Green Eggs and Ham	702	Magic Tree House Lions at Lunchtime	5,313
The Mouse and the Motorcycle	22,416	Little Bear	1,630	Harry Potter and the Sorcerer's Stone	77,325
The Wind in the Willows	58,424	The Red Badge of Courage	47,180	Harry Potter and the Chamber of Secrets	84,799
My Father's Dragon	7,682	Anne Frank: The Diary of a Young Girl	82,762	Junie B. Jones and the Stupid Smelly Bus	6,570
Frog and Toad All Year	1,727	Midnight for Charlie Bone	65,006	White Mountains	44,763
Book of Three	46,926	The Lion, The Witch and the Wardrobe	36,363	Double Fudge	38,860

Lesson 16: Date:



Exercises 1-2

1. From the table, choose two books with which you are familiar, and describe their locations in the data distribution shown in the histogram.

2. Put dots on the number line below that you think would represent a random sample of size 10 from the number of words distribution above.

Lesson 16: Date:

Example 2: Using Random Numbers to Select a Sample

The histogram indicates the differences in the number of words in the collection of 150 books. How many words are typical for a best-selling children's book? Answering this question would involve collecting data, and there would be variability in that data. This makes the question a statistical question. Think about the 150 books used to create the histogram above as a population. How would you go about collecting data to determine the typical number of words for the books in this population?

How would you choose a random sample from the collection of 150 books discussed in this lesson?

The data for the number of words in the 150 best-selling children's books are listed below. Select a random sample of the number of words for 10 books.

Books 1–10	59,635	82,762	92,410	75,340	8,234	59,705	92,409	75,338	8,230	82,768
Books 11–20	73,404	65,006	88,250	2,100	81,450	72,404	88,252	2,099	81,451	65,011
Books 21–30	69,066	36,363	75,000	3,000	80,798	69,165	75,012	3,010	80,790	36,361
Books 31–40	80,398	95,022	71,200	3,250	81,450	80,402	71,198	3,252	81,455	95,032
Books 41–50	22,416	11,049	81,400	3,100	83,475	22,476	81,388	3,101	83,472	11,047
Books 51–60	58,424	66,950	92,400	2,750	9,000	58,481	92,405	2,748	9,002	66,954
Books 61–70	7,682	5,313	83,000	87,000	89,170	7,675	83,021	87,008	89,167	5,311
Books 71–80	1,727	77,325	89,010	862	88,365	1,702	89,015	860	88,368	77,328
Books 81–90	46,926	84,799	88,045	927	89,790	46,986	88,042	926	89,766	84,796
Books 91–100	30,644	6,570	90,000	8,410	91,010	30,692	90,009	8,408	91,015	6,574
Books 101–110	35,968	44,763	89,210	510	9,247	35,940	89,213	512	9,249	44,766
Books 111–120	830	8,700	92,040	7,891	83,150	838	92,037	7,889	83,149	8,705
Books 121–130	702	92,410	94,505	38,860	81,110	712	94,503	87,797	81,111	92,412
Books 131–140	1,630	88,250	97,000	7,549	8,245	1,632	97,002	7,547	8,243	88,254
Books 141–150	47,180	75,000	89,241	81,234	8,735	47,192	89,239	81,238	8,739	75,010

Lesson 16: Date:

Exercises 3-6

- 3. Follow your teacher's instructions to generate a set of 10 random numbers. Find the total number of words corresponding to each book identified by your random numbers.
- 4. Choose two more different random samples of size 10 from the data, and make a dot plot of each of the three samples.

- 5. If your teacher randomly chooses 10 books from your summer vacation reading list, would you be likely to get many books with a lot of words? Explain your thinking using statistical terms.
- 6. If you were to compare your samples to your classmates' samples, do you think your answer to Exercise 5 would change? Why or why not?

Exercises 7-9: A Statistical Study of Balance and Grade

7. Is the following question a statistical question: Do sixth graders or seventh graders tend to have better balance? Why or why not?

Lesson 16: Date:

- 8. Berthio's class decided to measure balance by finding out how long people can stand on one foot.
 - a. How would you rephrase the question above to create a statistical question using this definition of balance? Explain your reasoning.

b. What should the class think about to be consistent in how they collect the data if they actually have people stand on one foot and measure the time?

- 9. Work with your class to devise a plan to select a random sample of sixth graders and a random sample of seventh graders to measure their balance using Berthio's method. Then, write a paragraph describing how you will collect data to determine whether there is a difference in how long sixth graders and seventh graders can stand on one foot. Your plan should answer the following questions:
 - a. What is the population? How will samples be selected from the population? And, why is it important that they be random samples?
 - b. How would you conduct the activity?
 - c. What sample statistics will you calculate, and how will you display and analyze the data?
 - d. What would you accept as evidence that there actually is a difference in how long sixth graders can stand on one foot compared to seventh graders?

Lesson 16: Date:

Lesson Summary

In this lesson, you collected data on total number of words by selecting a random sample of children's books. You also observed that several different samples of the same size had some characteristics in common with each other and with the population. In the second activity, you designed a statistical study. First, you considered a statistical question. Then, you went through the statistical process beginning with the question and then thinking about how to choose a random sample, how students would take part, what data you would collect to answer the question, and how you would display and analyze the data.

Problem Set

- 1. The suggestions below for how to choose a random sample of students at your school were made and vetoed. Explain why you think each was vetoed.
 - a. Use every fifth person you see in the hallway before class starts.
 - b. Use all of the students taking math the same time as your class meets.
 - c. Have students who come to school early do the activity before school starts.
 - d. Have everyone in the class find two friends to be in the sample.
- 2. A teacher decided to collect homework from a random sample of her students, rather than grading every paper every day.
 - a. Describe how she might choose a random sample of five students from her class of 35 students.
 - b. Suppose every day for 75 days throughout an entire semester she chooses a random sample of five students. Do you think some students will never get selected? Why or why not?
- 3. Think back to earlier lessons in which you chose a random sample. Describe how you could have used a random number generator to select a random sample in each case.
 - a. A random sample of the words in the poem Casey at the Bat
 - b. A random sample of the grocery prices on a weekly flyer
- 4. Sofia decided to use a different plan for selecting a random sample of books from the population of 150 top-selling children's books from Example 2. She generated ten random numbers between 1 and 100,000 to stand for the possible number of pages in any of the books. Then, she found the books that had the number of pages specified in the sample. What would you say to Sofia?
- 5. Find an example from a newspaper, magazine, or another source that used a sample. Describe the population, the sample, the sample statistic, how you think the sample might have been chosen, and whether or not you think the sample was random.

Lesson 16: Date:

