Lesson 1: Exponential Notation

Classwork

5⁶ means 5 × 5 × 5 × 5 × 5 × 5 and $\frac{9}{7}^{4}$ means $\frac{9}{7} \times \frac{9}{7} \times \frac{9}{7} \times \frac{9}{7}$

You have seen this kind of notation before: it is called **exponential notation**. In general, for any number x and any positive integer n_i

$$x^n = x \cdot x \cdots x$$
.
n times

The number x^n is called *x* raised to the n^{th} power, where *n* is the **exponent** of *x* in x^n and *x* is the **base** of x^n .

Exercise 1

 $4 \times \cdots \times 4 =$ 7 times

Exercise 2

 $3.6 \times \cdots \times 3.6 = 3.6^{47}$ _____ times

Exercise 3

-11.63 × ··· × (-11.63 = 34 times

Exercise 4

 $12 \times \cdots \times 12 = 12^{15}$ _____times

Exercise 5

 $-5 \times \cdots \times -5 =$ 10 times

Exercise 6

$$\frac{7}{2} \times \cdots \times \frac{7}{2} =$$
21 times

Exercise 7

 $-13 \times \cdots \times -13 =$ 6 times

Exercise 8

 $-\frac{1}{14} \times \cdots \times -\frac{1}{14} =$ 10 times

Exercise 9

 $x \cdot x \cdots x =$ 185 times

Exercise 10

 $x \cdot x \cdots x = x^n$ ____times

This work is licensed under a

Lesson 1: **Exponential Notation** 10/21/14

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

S.1

Date:

Lesson 1

8•1

Exercise 11

Will these products be positive or negative? How do you know?

 $-1 \times -1 \times \cdots \times -1 = -1^{12}$ 12 times

 $-1 \times -1 \times \cdots \times -1 = -1^{13}$ 13 times

Exercise 12

Is it necessary to do all of the calculations to determine the sign of the product? Why or why not?

 $-5 \times -5 \times \cdots \times -5 = -5^{95}$ 95 times

 $-1.8 \times -1.8 \times \cdots \times -1.8 = -1.8$ ¹²² 122 times

engage^{ny}

Date:

Exercise 13

Fill in the blanks about whether the number is positive or negative.

If *n* is a positive even number, then -55^{n} is _____.

If *n* is a positive odd number, then -72.4^{n} is ______.

Exercise 14

Josie says that $-15 \times \cdots \times -15 = -15^6$. Is she correct? How do you know? 6 times

engage^{ny}

Problem Set

1. Use what you know about exponential notation to complete the expressions below.

$\begin{array}{ccc} -5 & \times \cdots \times & -5 & = \\ & & 17 \text{ times} \end{array}$	$3.7 \times \cdots \times 3.7 = 3.7^{19}$
$7 \times \cdots \times 7 = 7^{45}$ times	$6 \times \cdots \times 6 =$ 4 times
$4.3 \times \cdots \times 4.3 =$ 13 times	$(-1.1) \times \cdots \times -1.1 =$ 9 times
$\frac{2}{3} \times \cdots \times \frac{2}{3} =$ 19 times	$-\frac{11}{5} \times \cdots \times -\frac{11}{5} = -\frac{11}{5}^{x}$
$(-12) \times \cdots \times (-12) = -12^{15}$	$a \times \cdots \times a = m$ times

- Write an expression with (-1) as its base that will produce a positive product. 2.
- 3. Write an expression with (-1) as its base that will produce a negative product.
- Rewrite each number in exponential notation using 2 as the base. 4.

8 =	16 =	32 =
64 =	128 =	256 =

- Tim wrote 16 as -2^{4} . Is he correct? 5.
- Could -2 be used as a base to rewrite 32? 64? Why or why not? 6.

engage^{ny}

Date: