Lesson 2: Multiplication of Numbers in Exponential Form

Classwork

In general, if x is any number and m, n are positive integers, then

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

because

$$
x^{m} \times x^{n}=\underset{m \text { times }}{x \cdots x} \times \underset{n \text { times }}{x \cdots x}=\underset{m+n \text { times }}{x \cdots x}=x^{m+n} .
$$

Exercise 1

$14^{23} \times 14^{8}=$

Exercise 2

$-72^{10} \times-72^{13}=$

Exercise 5

Let a be a number.
$a^{23} \cdot a^{8}=$

Exercise 6

Let f be a number.
$f^{10} \cdot f^{13}=$

Exercise 7

Let b be a number.
$b^{94} \cdot b^{78}=$

Exercise 8

Let x be a positive integer. If $-3^{9} \times-3^{x}=-3^{14}$, what is x ?

What would happen if there were more terms with the same base? Write an equivalent expression for each problem.

Exercise 9

$9^{4} \times 9^{6} \times 9^{13}=$

Exercise 10

$2^{3} \times 2^{5} \times 2^{7} \times 2^{9}=$

Can the following expressions be simplified? If so, write an equivalent expression. If not, explain why not.

Exercise 11

$6^{5} \times 4^{9} \times 4^{3} \times 6^{14}=$

Exercise 14

$2^{4} \times 8^{2}=2^{4} \times 2^{6}=$

Exercise 12

$-4^{2} \cdot 17^{5} \cdot-4^{3} \cdot 17^{7}=$

Exercise 15

$$
3^{7} \times 9=3^{7} \times 3^{2}=
$$

Exercise 13

$15^{2} \cdot 7^{2} \cdot 15 \cdot 7^{4}=$

Exercise 16

$5^{4} \times 2^{11}=$

Exercise 17

Let x be a number. Simplify the expression of the following number:

$$
2 x^{3} \quad 17 x^{7}=
$$

Exercise 18

Let a and b be numbers. Use the distributive law to simplify the expression of the following number:
$a a+b=$

Exercise 19

Let a and b be numbers. Use the distributive law to simplify the expression of the following number:
b $a+b=$

Exercise 20

Let a and b be numbers. Use the distributive law to simplify the expression of the following number:

$$
a+b \quad a+b=
$$

In general, if x is nonzero and m, n are positive integers, then

$$
\frac{x^{m}}{x^{n}}=x^{m-n}, \text { if } m>n
$$

Exercise 21

$\frac{7^{9}}{7^{6}}=$

Exercise 23
$\frac{\frac{8}{5}^{9}}{\frac{8}{5}^{2}}=$

Exercise 24

$\frac{13^{5}}{13^{4}}=$

Exercise 25

Let a, b be nonzero numbers. What is the following number?

$$
\frac{\frac{a}{b}^{9}}{\frac{a}{b}^{2}}=
$$

Exercise 26

Let x be a nonzero number. What is the following number?
$\frac{x^{5}}{x^{4}}=$

Can the following expressions be simplified? If yes, write an equivalent expression for each problem. If not, explain why not.

Exercise 27
$\frac{2^{7}}{4^{2}}=\frac{2^{7}}{2^{4}}=$

Exercise 29

$\frac{3^{5} \cdot 2^{8}}{3^{2} \cdot 2^{3}}=$

Exercise 28
$\frac{3^{23}}{27}=\frac{3^{23}}{3^{3}}=$

Exercise 30

$$
\frac{-2^{7} \cdot 95^{5}}{-2^{5} \cdot 95^{4}}=
$$

Exercise 31

Let x be a number. Simplify the expression of each of the following numbers:
a. $\frac{5}{x^{3}} 3 x^{8}=$
b. $\frac{5}{x^{3}}-4 x^{6}=$
c. $\frac{5}{x^{3}} 11 x^{4}=$

Exercise 32

Anne used an online calculator to multiply $2,000,000,000 \times 2,000,000,000,000$. The answer showed up on the calculator as $4 \mathrm{e}+21$, as shown below. Is the answer on the calculator correct? How do you know?

					$4 e+21$	
Rad	\#\#:	x !	$($)	\%	AC
Inv	sin	In	7	8	9	\div
π	\cos	\log	4	5	6	\times
e	\tan	$\sqrt{ }$	1	2	3	-
Ans	EXP	x^{y}	0	.	=	+

Problem Set

1. A certain ball is dropped from a height of x feet. It always bounces up to $\frac{2}{3} x$ feet. Suppose the ball is dropped from 10 feet and is caught exactly when it touches the ground after the $30^{\text {th }}$ bounce. What is the total distance traveled by the ball? Express your answer in exponential notation.

Bounce	Computation of Distance Traveled in Previous Bounce	Total Distance Traveled (in feet)
1		
2		
3		
4		
30		
n		

2. If the same ball is dropped from 10 feet and is caught exactly at the highest point after the $25^{\text {th }}$ bounce, what is the total distance traveled by the ball? Use what you learned from the last problem.
3. Let a and b be numbers and $b \neq 0$, and let m and n be positive integers. Simplify each of the following expressions as much as possible:

$-19^{5} \cdot-19^{11}=$	$2.7^{5} \times 2.7^{3}=$
$\frac{7^{10}}{7^{3}}=$	$\frac{1}{5}^{2} \cdot \frac{1}{5}^{15}=$
$-\frac{9}{7}^{m} \cdot-\frac{9}{7}^{n}=$	$\frac{a b^{3}}{b^{2}}=$

4. Let the dimensions of a rectangle be $\left(4 \times 871209{ }^{5}+3 \times 49762105\right) \mathrm{ft}$. by $7 \times 871209{ }^{3}-49762105^{4} \mathrm{ft}$. Determine the area of the rectangle. No need to expand all the powers.
5. A rectangular area of land is being sold off in smaller pieces. The total area of the land is 2^{15} square miles. The pieces being sold are 8^{3} square miles in size. How many smaller pieces of land can be sold at the stated size? Compute the actual number of pieces.
