Lesson 2: Multiplication of Numbers in Exponential Form

Classwork

In general, if x is any number and m, n are positive integers, then

$$x^m \cdot x^n = x^{m+n}$$

because

$$x^m \times x^n = x \cdots x \times x \cdots x = x \cdots x = x^{m+n}$$
.

 $x^m \times x^n = x \cdots x \times x \cdots x = x^{m+n}$.

 $x^m \times x^n = x \cdots x \times x \cdots x = x^{m+n}$.

Exercise 1

$14^{23} \times 14^8 =$

Exercise 5

Let a be a number.

$$a^{23} \cdot a^8 =$$

Exercise 2

$$-72^{10} \times -72^{13} =$$

Exercise 6

Let f be a number.

$$f^{10} \cdot f^{13} =$$

Exercise 3

$$5^{94} \times 5^{78} =$$

Exercise 7

Let *b* be a number.

$$b^{94} \cdot b^{78} =$$

Exercise 4

$$-3^{9} \times -3^{5} =$$

Exercise 8

Let x be a positive integer. If $-3^{9} \times -3^{x} = -3^{14}$, what is x?

S.5

What would happen if there were more terms with the same base? Write an equivalent expression for each problem.

Exercise 9

$$9^4 \times 9^6 \times 9^{13} =$$

Exercise 10

$$2^3 \times 2^5 \times 2^7 \times 2^9 =$$

Can the following expressions be simplified? If so, write an equivalent expression. If not, explain why not.

Exercise 11

$$6^5 \times 4^9 \times 4^3 \times 6^{14} =$$

$$2^4 \times 8^2 = 2^4 \times 2^6 =$$

Exercise 12

$$-4^{2} \cdot 17^{5} \cdot -4^{3} \cdot 17^{7} =$$

$$3^7 \times 9 = 3^7 \times 3^2 =$$

Exercise 13

$$15^2 \cdot 7^2 \cdot 15 \cdot 7^4 =$$

$$5^4 \times 2^{11} =$$

Exercise 17

Let x be a number. Simplify the expression of the following number:

$$2x^3 17x^7 =$$

Exercise 18

Let *a* and *b* be numbers. Use the distributive law to simplify the expression of the following number:

$$a a + b =$$

Exercise 19

Let a and b be numbers. Use the distributive law to simplify the expression of the following number:

b a + b =

Exercise 20

Let a and b be numbers. Use the distributive law to simplify the expression of the following number:

a + b a + b =

In general, if x is nonzero and m, n are positive integers, then

$$\frac{x^m}{x^n} = x^{m-n}, \text{ if } m > n.$$

Exercise 21

$$\frac{7^9}{76} =$$

Exercise 23

$$\frac{\frac{8}{5}}{\frac{8}{5}}^{2} =$$

Exercise 22

$$\frac{-5^{16}}{-5^{7}} =$$

$$\frac{13^5}{13^4} =$$

Exercise 25

Let a, b be nonzero numbers. What is the following number?

$$\frac{\frac{a}{b}^{9}}{\frac{a}{b}^{2}} =$$

Exercise 26

Let x be a nonzero number. What is the following number?

$$\frac{x^5}{x^4} =$$

Can the following expressions be simplified? If yes, write an equivalent expression for each problem. If not, explain why not.

Exercise 27

$$\frac{2^7}{4^2} = \frac{2^7}{2^4} =$$

Exercise 29

$$\frac{3^5 \cdot 2^8}{3^2 \cdot 2^3} =$$

Exercise 28

$$\frac{3^{23}}{27} = \frac{3^{23}}{3^3} =$$

$$\frac{-2^{-7} \cdot 95^5}{-2^{-5} \cdot 95^4} =$$

Exercise 31

Let x be a number. Simplify the expression of each of the following numbers:

a.
$$\frac{5}{x^3} 3x^8 =$$

b.
$$\frac{5}{x^3} - 4x^6 =$$

c.
$$\frac{5}{x^3} 11x^4 =$$

Exercise 32

Anne used an online calculator to multiply $2,000,000,000 \times 2,000,000,000,000$. The answer showed up on the calculator as 4e + 21, as shown below. Is the answer on the calculator correct? How do you know?

	2000000000 x 20000000000000000000000000					
	4e+21					
Rad		x!	()	%	AC
Inv	sin	ln	7	8	9	÷
π	cos	log	4	5	6	×
е	tan	√	1	2	3	-
Ans	EXP	xy	0		=	+

Problem Set

1. A certain ball is dropped from a height of x feet. It always bounces up to $\frac{2}{3}x$ feet. Suppose the ball is dropped from 10 feet and is caught exactly when it touches the ground after the 30^{th} bounce. What is the total distance traveled by the ball? Express your answer in exponential notation.

Bounce	Computation of Distance Traveled in Previous Bounce	Total Distance Traveled (in feet)
1		
2		
3		
4		
30		
n		

- 2. If the same ball is dropped from 10 feet and is caught exactly at the highest point after the 25^{th} bounce, what is the total distance traveled by the ball? Use what you learned from the last problem.
- 3. Let a and b be numbers and $b \neq 0$, and let m and n be positive integers. Simplify each of the following expressions as much as possible:

-19 ⁵ · -19 ¹¹ =	$2.7^5 \times 2.7^3 =$
$\frac{7^{10}}{7^3} =$	$\frac{1}{5}^{2} \cdot \frac{1}{5}^{15} =$
$-\frac{9}{7}^{m} \cdot -\frac{9}{7}^{n} =$	$\frac{ab^3}{b^2} =$

- 4. Let the dimensions of a rectangle be $(4 \times 871209^{-5} + 3 \times 49762105)$ ft. by $7 \times 871209^{-3} 49762105^{-4}$ ft. Determine the area of the rectangle. No need to expand all the powers.
- 5. A rectangular area of land is being sold off in smaller pieces. The total area of the land is 2¹⁵ square miles. The pieces being sold are 8³ square miles in size. How many smaller pieces of land can be sold at the stated size? Compute the actual number of pieces.

Lesson 2: Date: Multiplication of Numbers in Exponential Form 10/21/14

