Lesson 4: Numbers Raised to the Zeroth Power

Classwork

For any numbers x, y, and any positive integers m, n, the following holds

$$
\begin{gather*}
x^{m} \cdot x^{n}=x^{m+n} \tag{1}\\
x^{m n}=x^{m n} \tag{2}\\
x y^{n}=x^{n} y^{n} \tag{3}
\end{gather*}
$$

Definition: \qquad

Exercise 1

List all possible cases of whole numbers m and n for identity (1). More precisely, when $m>0$ and $n>0$, we already know that (1) is correct. What are the other possible cases of m and n for which (1) is yet to be verified?

Exercise 2

Check that equation (1) is correct for each of the cases listed in Exercise 1.

Exercise 3

Do the same with equation (2) by checking it case-by-case.

Exercise 4

Do the same with equation (3) by checking it case-by-case.

Exercise 5

Write the expanded form of 8,374using exponential notation.

Exercise 6

Write the expanded form of $6,985,062$ using exponential notation.

Problem Set

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions of numbers.

1. $\frac{y^{12}}{y^{12}}=$	2. $9^{15} \cdot \frac{1}{9^{15}}=$
3. $7123456.789^{40}=$	4. $2^{2} \cdot \frac{1}{2^{5}} \cdot 2^{5} \cdot \frac{1}{2^{2}}=$
5. $\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}}=$	

