Lesson 4: Numbers Raised to the Zeroth Power

Classwork

For any numbers x, y, and any positive integers m, n, the following holds		
$x^m \cdot x^n = x^{m+n}$	(1)	
$x^{m \ n} = x^{mn}$	(2)	
$xy^{n} = x^{n}y^{n}.$	(3)	
Definition:		

Exercise 1

List all possible cases of whole numbers m and n for identity (1). More precisely, when m > 0 and n > 0, we already know that (1) is correct. What are the other possible cases of m and n for which (1) is yet to be verified?

Exercise 2

Check that equation (1) is correct for each of the cases listed in Exercise 1.

Numbers Raised to the Zeroth Power 10/21/14

S.14

Exercise 3

Do the same with equation (2) by checking it case-by-case.

Exercise 4

Do the same with equation (3) by checking it case-by-case.

Exercise 5

Write the expanded form of 8,374 using exponential notation.

Exercise 6

Write the expanded form of 6,985,062 using exponential notation.

Numbers Raised to the Zeroth Power 10/21/14

S.15

Problem Set

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions of numbers.

1. $\frac{y^{12}}{y^{12}} =$	2. $9^{15} \cdot \frac{1}{9^{15}} =$
3. 7 123456.789 4 0 =	4. $2^2 \cdot \frac{1}{2^5} \cdot 2^5 \cdot \frac{1}{2^2} =$
5. $\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}} =$	

Numbers Raised to the Zeroth Power 10/21/14

S.16

