Lesson 4: Definition of Reflection and Basic Properties

Classwork

Exercises

1. Reflect $\triangle A B C$ and Figure D across line L. Label the reflected images.

2. Which figure(s) were not moved to a new location on the plane under this transformation?
3. Reflect the images across line L. Label the reflected images.

4. Answer the questions about the image above.
a. Use a protractor to measure the reflected $\angle A B C$. What do you notice?
b. Use a ruler to measure the length of $I J$ and the length of the image of $I J$ after the reflection. What do you notice?
5. Reflect Figure R and $\triangle E F G$ across line L. Label the reflected images.

Basic Properties of Reflections:
(Reflection 1) A reflection maps a line to a line, a ray to a ray, a segment to a segment, and an angle to an angle.
(Reflection 2) A reflection preserves lengths of segments.
(Reflection 3) A reflection preserves measures of angles.
If the reflection is across a line L and P is a point not on L, then L bisects the segment $P P^{\prime}$, joining P to its reflected image P^{\prime}. That is, the lengths of $O P$ and $O P^{\prime}$ are equal.

Lesson 4:	Definition of Reflection and Basic Properties
Date:	$10 / 28 / 14$

Use the picture below for Exercises 6-9.

6. Use the picture to label the unnamed points.
7. What is the measure of $\angle J K I$? $\angle K I J$? $\angle A B C$? How do you know?
8. What is the length of segment Reflection $(F H)$? IJ? How do you know?
9. What is the location of Reflection(D)? Explain.

Lesson Summary

- A reflection is another type of basic rigid motion.
- Reflections occur across lines. The line that you reflect across is called the line of reflection.
- When a point, P, is joined to its reflection, P^{\prime}, the line of reflection bisects the segment, $P P^{\prime}$.

Problem Set

1. In the picture below, $\angle D E F=56^{\circ}, \angle A C B=114^{\circ}, A B=12.6$ units, $J K=5.32$ units, point E is on line L, and point I is off of line L. Let there be a reflection across line L. Reflect and label each of the figures, and answer the questions that follow.

-

2. What is the measure of Reflection $(\angle D E F)$? Explain.
3. What is the length of Reflection(JK)? Explain.
4. What is the measure of Reflection $(\angle A C B)$?
5. What is the length of Reflection $(A B)$?
6. Two figures in the picture were not moved under the reflection. Name the two figures and explain why they were not moved.
7. Connect points I and I^{\prime}. Name the point of intersection of the segment with the line of reflection point Q. What do you know about the lengths of segments $I Q$ and $Q I^{\prime}$?
