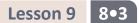

Lesson 9: Basic Properties of Similarity

Classwork

Exploratory Challenge 1

The goal is to show that if $\triangle ABC$ is similar to $\triangle A'B'C'$, then $\triangle A'B'C'$ is similar to $\triangle ABC$. Symbolically, if $\triangle ABC \sim \triangle A'B'C'$, then $\triangle A'B'C' \sim \triangle ABC$.

a. First determine whether or not $\triangle ABC$ is in fact similar to $\triangle A'B'C'$. (If it isn't, then no further work needs to be done.) Use a protractor to verify that the corresponding angles are congruent and that the ratios of the corresponding sides are equal to some scale factor.


Basic Properties of Similarity 10/30/14

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

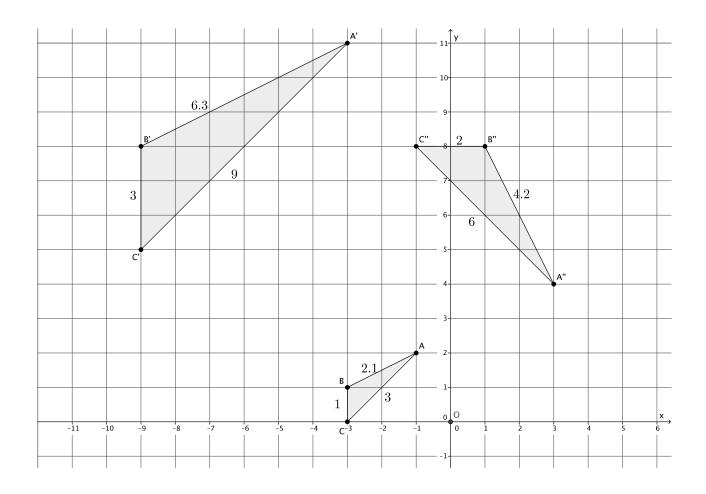
This work is licensed under a

b. Describe the sequence of dilation followed by a congruence that proves $\triangle ABC \sim \triangle A'B'C'$.

c. Describe the sequence of dilation followed by a congruence that proves $\triangle A'B'C' \sim \triangle ABC$.

d. Is it true that $\triangle ABC \sim \triangle A'B'C'$ and $\triangle A'B'C' \sim \triangle ABC$? Why do you think this is so?

Basic Properties of Similarity 10/30/14



S.44

Exploratory Challenge 2

The goal is to show that if $\triangle ABC$ is similar to $\triangle A'B'C'$, and $\triangle A'B'C'$ is similar to $\triangle A''B''C''$, then $\triangle ABC$ is similar to $\triangle A''B''C''$. Symbolically, if $\triangle ABC \sim \triangle A'B'C'$ and $\triangle A'B'C' \sim \triangle A''B''C''$, then $\triangle ABC \sim \triangle A''B''C''$

a. Describe the similarity that proves $\triangle ABC \sim \triangle A'B'C'$.

Basic Properties of Similarity 10/30/14

S.45

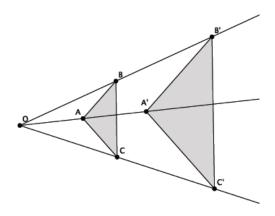
b. Describe the similarity that proves $\triangle A'B'C' \sim \triangle A''B''C''$.

c. Verify that, in fact, $\triangle ABC \sim \triangle A''B''C''$ by checking corresponding angles and corresponding side lengths. Then describe the sequence that would prove the similarity $\triangle ABC \sim \triangle A''B''C''$.

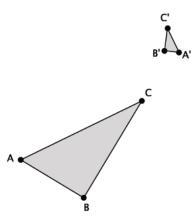
d. Is it true that if $\triangle ABC \sim \triangle A'B'C'$ and $\triangle A'B'C' \sim \triangle A''B''C''$, then $\triangle ABC \sim \triangle A''B''C''$? Why do you think this is so?

Basic Properties of Similarity 10/30/14

S.46


Lesson Summary

Similarity is a symmetric relation. That means that if one figure is similar to another, $S \sim S'$, then we can be sure that $S' \sim S$.


Similarity is a transitive relation. That means that if we are given two similar figures, $S \sim T$, and another statement about $T \sim U$, then we also know that $S \sim U$.

Problem Set

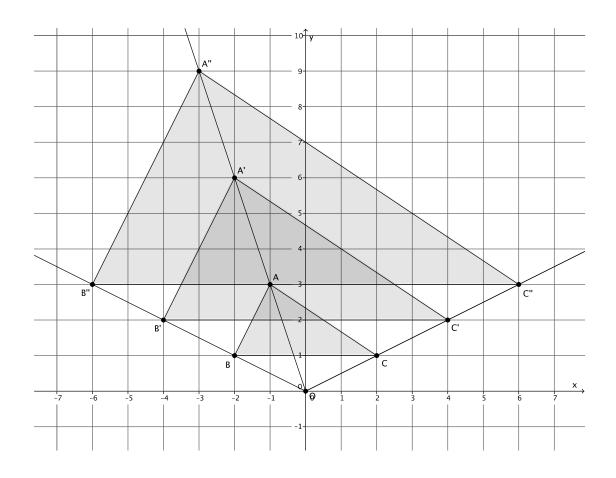
- 1. Would a dilation alone be enough to show that similarity is symmetric? That is, would a dilation alone prove that if $\triangle ABC \sim \triangle A'B'C'$, then $\triangle A'B'C' \sim \triangle ABC$? Consider the two examples below.
 - a. Given $\triangle ABC \sim \triangle A'B'C'$. Is a dilation enough to show that $\triangle A'B'C' \sim \triangle ABC$? Explain.

b. Given $\triangle ABC \sim \triangle A'B'C'$. Is a dilation enough to show that $\triangle A'B'C' \sim \triangle ABC$? Explain.

c. In general, is dilation enough to prove that similarity is a symmetric relation? Explain.

Basic Properties of Similarity 10/30/14

CC) BY-NC-SA



Lesson 9:

Date:

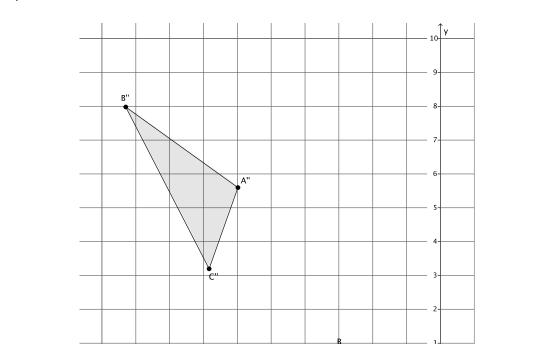
- 2. Would a dilation alone be enough to show that similarity is transitive? That is, would a dilation alone prove that if $\triangle ABC \sim \triangle A'B'C'$, and $\triangle A'B'C' \sim \triangle A''B''C''$, then $\triangle ABC \sim \triangle A''B''C''$? Consider the two examples below.
 - a. Given $\triangle ABC \sim \triangle A'B'C'$ and $\triangle A'B'C' \sim \triangle A''B''C''$. Is a dilation enough to show that $\triangle ABC \sim \triangle A''B''C''$? Explain.

Basic Properties of Similarity 10/30/14

S.48

Lesson 9

8•3


This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

-10

-9

-8

Α

-6

-3

C

Α'

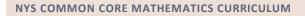
-2

В

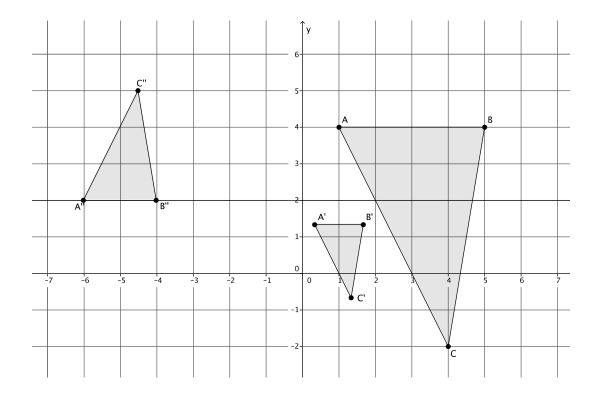
b. Given $\triangle ABC \sim \triangle A'B'C'$ and $\triangle A'B'C' \sim \triangle A''B''C''$. Is a dilation enough to show that $\triangle ABC \sim \triangle A''B''C''$? Explain.

c. In general, is dilation enough to prove that similarity is a transitive relation? Explain.

Basic Properties of Similarity 10/30/14



х


0

-1

0

3. In the diagram below, $\triangle ABC \sim \triangle A'B'C'$ and $\triangle A'B'C' \sim \triangle A''B''C''$. Is $\triangle ABC \sim \triangle A''B''C''$? If so, describe the dilation followed by the congruence that demonstrates the similarity.

Basic Properties of Similarity 10/30/14

S.50

Lesson 9

8•3

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>